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Abstract

When price discovery is necessary for time-sensitive goods, a common practice is to conduct
an auction for each item sequentially, but dynamic incentives can lead to behavior distinct
from static settings. We provide a novel empirical analysis of a large-scale sequential market
that employs auctions to allocate objects to firms with budget constraints, leveraging a unique
proprietary dataset of the online advertising market. In this market, because of their short-run
budget constraints, participants face a tradeoff between winning auctions immediately or holding
out for later opportunities. This dynamic incentive prompts them to adjust their entry rates and
bidding strategies accordingly. We develop and estimate a finite-horizon dynamic game between
bidders with heterogeneous budgets facing a sequence of simultaneous auctions to quantify
this incentive and analyze its implication in competition and auction design. We find that a
substantial markdown occurs due to the dynamic incentives arising from budget constraints, and
this markdown varies significantly among bidders with different budgets. Using the estimated
structural model, we provide a counterfactual simulation comparing the first-price and second-
price formats. Unlike the standard environment, we find that dynamics and heterogeneous
budgets lead to a significant disparity in the welfare distributions under them. This highlights
that even a seemingly simple mechanism choice can have competitive implications in such a
dynamic environment.
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1 Introduction

Auctions are employed in many real-world contexts, leading to extensive theoretical and empirical
research that provides valuable insights for shaping policy decisions and mechanism design.1 How-
ever, much of this prior research has primarily focused on analyzing auction models where bidders
face only one auction. In practice, bidders almost always make bid decisions in the presence of
multiple auctions, often conducted sequentially. For instance, sequential auctions are prevalent in
procurement, gas and oil lease, wholesale electricity, treasury, art, online retail, and online adver-
tising markets. Such multi-object, sequential auction scenarios have received comparatively less
attention in the literature. In particular, there is a notable gap in our understanding regarding
sequential auctions in which participating bidders face budget constraints. When auctions are
held sequentially, intertemporal budget constraints can strategically link these auctions, influencing
competitive dynamics. Financial constraints are pervasive, affecting both consumers with budget
limitations and firms operating as buyers, who may face restricted purchasing power due to finan-
cial frictions or institutional constraints. Given the prevalence of sequential auctions and budget
constraints in real-world settings, research in this domain holds significant promise for informing
policy decisions and influencing mechanism design across diverse markets.

We propose a novel structural model of dynamic auctions with budget-constrained bidders and
empirically analyze the online display advertising market, where intertemporal budget constraints
play a crucial role. Our model offers both tractability and flexibility, enabling predictions of strate-
gic behavior across various auction mechanisms. By estimating model primitives using a proprietary
dataset of dynamic first-price auctions for ad opportunities, we find that dynamic incentives signifi-
cantly affect markdown, varying across bidders with different budgets. We provide a counterfactual
analysis comparing the first-price and second-price mechanisms, which have the same revenue and
welfare considerations under the conventional auction model. We discover that dynamics and het-
erogeneous budgets lead to substantial differences in the surplus distribution. Intermediate and
smaller budget bidders fare better in the first-price format due to reduced price variance, which
allows for more aggressive bidding. This heightened competition prompts larger bidders to spend
quickly, leading to diminished competition in later periods and ultimately benefiting smaller bid-
ders overall. This novel finding highlights the significance of price volatility in shaping competitive
outcomes in dynamic mechanism design with budget-constrained buyers.

Our empirical setting is the online display advertising market. This is the market behind online
banner and video advertisements, generating more than $100 billion annually in the US. We use a
novel proprietary dataset of auctions hosted on Yahoo’s ad exchange. In this market, a significant
proportion of advertising opportunities are allocated through real-time auctions. When a user
visits a website, it triggers an instantaneous auction where the user’s characteristics are revealed
to bidders. Currently, the market predominantly uses the first-price auction mechanism. The

1Refer to Krishna (2009) and Milgrom (2004) for comprehensive introductions to auction theory. See Paarsch et al.
(2006), Hickman et al. (2012), Gentry et al. (2018), and Perrigne and Vuong (2019) for overviews of econometric
methods and empirical studies on auctions.
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highest bidder secures the privilege of displaying their ad on the user’s screen once the page fully
loads. These real-time auctions enable advertisers to effectively target users and ensure their ads are
presented before users navigate away from the webpage. In this market, advertisers typically hire
bidding agents who participate in these auctions on their behalf, and advertisers frequently impose
specific campaign budgets on these agents, typically allocated on a daily basis. These bidding agents
are frequently affiliated with major tech firms such as Google and Amazon, which tend to attract
numerous advertisers, including those with substantial campaign budgets. One responsibility of
these bidding agents is to strategize on how to effectively participate and bid within the continuous
stream of instantaneous auctions while adhering to the daily budgets assigned to them.

We first document dynamic patterns in the data that are consistent with daily budget con-
straints. First, we observe a declining trend in both the entry rate and bid levels throughout the
day, from morning to evening. This trend is in line with diminishing demand, likely caused by bid-
ders exhausting their daily budgets. In fact, theoretical research has shown that sequential auctions
can exhibit such a decreasing price pattern with unit-demand bidders (Engelbrecht-Wiggans, 1994;
Bernhardt and Scoones, 1994; Gale and Hausch, 1994). Second, we also find that the entry rate
and bid level are negatively affected by the frequency of auctions. In other words, when there is an
increase in the number of auctions (from high supply), both the entry rate and bid levels decrease.
This suggests that bidders may exercise caution by submitting less competitive bids when faced
with a higher volume of auctions, aiming to preserve their future spending capacity and prevent
exceeding their budget constraints by winning too many auctions. This relationship is robust to
controlling for numerous bidder and auction characteristics, including time fixed effects.

Motivated by the institutional features and the dynamic pattern in the data, we develop a
structural model for dynamic auctions with budget-constrained bidders. In this model, each day in
the market is represented as a finite-horizon dynamic game where bidders face numerous auctions in
each period. The number of auctions per period follows a stochastic daily supply pattern. Bidders
have independent private entry costs and valuations for auctions, and they are penalized at the end
of the game if their total expenditure exceeds their budget. We analyze the best-response problem
under the first-price auction mechanism, which is the current mechanism used in our empirical
context. Our analysis reveals that the dynamic constraint introduces another force to depress their
bids in addition to the force from being in the first-price auction. There is a tradeoff between
allocating their budget toward current auctions versus preserving it for later opportunities. This
opportunity cost manifests as an additional markdown whose magnitude depends on the number of
remaining periods, the frequency of auctions, and the bidder’s remaining budget. In addition, the
dynamic tradeoff similarly influences the entry strategy.

Solving our model poses significant computational challenges due to its dynamic nature, ex-
acerbated by several factors. These include the presence of continuous choice variables without
closed-form expressions, a finite time horizon resulting in non-stationarity, a relatively large number
of players (around thirty), and, most critically, a high-dimensional continuous state space with a
continuous state variable (remaining budget) associated to each player. To tackle these complexi-
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ties, we leverage the fact that bidders do not have access to information about their rivals’ spending
behaviors. In light of this information asymmetry, we adopt a large-market solution concept in
which bidders rely on the equilibrium distribution of players’ states for each period as their belief.
Hence, each bidder decides his entry and bid strategy conditional on the time period, public state
(number of auctions), and his own remaining budget. By employing this approach, we effectively
reduce the problem’s dimensionality, enabling estimation and counterfactual simulation while still
allowing for meaningful analysis of dynamic bidding behaviors.

Following the literature on structural estimation of dynamic games, we adopt a two-step ap-
proach to estimate our structural model (Bajari et al., 2007; Aguirregabiria and Mira, 2007). As-
suming that the market is in equilibrium under our solution concept, we estimate our structural
model by leveraging bidders’ best-response problem given their rivals’ equilibrium behavior. In the
first step, we estimate the time-dependent distribution of the number of auctions, along with the
reduced-form entry probability and bid distribution. In the second step, we solve for bidders’ entry
and bid strategies as best responses to rivals’ estimated behaviors from the first stage and estimate
the structural parameters through maximum likelihood estimation. This sequential approach allows
us to avoid the need for solving the equilibrium and simulating the equilibrium state distribution
during the estimation process.

The identification of our structural parameters, such as bidders’ budgets and the budget con-
straint parameter, relies on the exclusion restriction that bidders’ valuations are independent of the
state variables, which are the frequency of auctions and their remaining budgets. This assumption is
required for disentangling the effect on bids from valuations and intertemporal budget constraints.
For instance, when bids are low, we must determine whether this is due to low valuations or in-
creased dynamic tradeoffs. The exclusion restriction enables us to identify the parameters relevant
to budget constraints by using the correlation between bids and the state variables, which impact
only the dynamic tradeoffs. This exogeneity assumption is plausible for our market environment be-
cause advertisers and their bidding agents typically compute their valuations for impressions based
on a combination of the probability of clicking/making a sale and their willingness to pay for such
events. This probability is computed based on that user’s contextual and behavioral data alone.

Applying our structural estimation method on a large-scale proprietary dataset of online banner-
ad auctions from Yahoo reveals significant dynamic incentives arising from budget constraints.
The markdown, representing the gap between valuations and bids, averages 83.5% of expected
valuations. Our estimated model demonstrates that first-price auctions induce 59.4% shading, and
dynamic budget constraints add an extra 24.2% shading. Our model also quantifies the impact
on entry decisions, with an average entry probability of 19.4%, compared to an unconstrained
entry probability of 45.1%. These findings underscore the significance of dynamic incentives in this
context. Additionally, we observe a notable concentration of estimated budgets among bidders,
which has a substantial impact on the heterogeneity in their bids and entry decisions.

Using our estimated structural model, we simulate a counterfactual scenario motivated by a
significant institutional change that took place around 2018. During this period, the predominant
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auction mechanism in the online ad market shifted from the second-price format to the first-price
auction. This transition was prompted by concerns within the industry that ad exchanges, serving
as intermediaries between publishers and advertisers, were not actually implementing the second-
price auction as claimed, leading to a loss of trust among market participants. In response to this
industry-wide credibility crisis, market participants advocated for the first-price auction due to its
transparency in revealing what winners pay. Motivated by this shift, which happened years before
our sample period, we simulate the second-price auction format using the estimated structural model
as a counterfactual scenario to analyze the revenue and welfare consequences.

Our counterfactual simulation reveals that the first-price auction yields slightly higher total
revenue and total bidder surplus compared to the second-price auction. More importantly, we
observe a substantial disparity in welfare distribution between these two auction formats. We find
that bidders below the two largest budget holders face more favorable outcomes under the first-
price auction. This suggests that, in addition to its transparency benefits, the first-price auction
may offer a more robust competition in the presence of market concentration. This outcome can
be attributed to the reduced price volatility under the first-price auction. Lower price volatility
allows bidders to bid more aggressively, as it enables better control over their spending patterns.
While bidders with intermediate-size and small budgets lower their entry rates in response to this
increase in competition, the two bidders with the largest budgets keep a similar entry rate since
they can afford to. Nevertheless, this increase in competition induces these top bidders to spend
more rapidly and leads to decreased competition in later periods. Then, smaller bidders can enjoy
this smaller competition and earn more surplus during this period. This difference leads bidders
other than the top two bidders to be better off under the first-price auction. This result underscores
that even a seemingly simple choice of first-price or second-price can have competitive implications
when auctions are conducted sequentially and participated by bidders with heterogeneous budgets.

While prior research has empirically explored dynamic aspects in various auction contexts, our
study offers a novel perspective by investigating online display ad auctions with intertemporal budget
constraints, contributing the first empirical analysis of dynamic auctions with budget-constrained
bidders. Our work builds on the growing empirical literature utilizing structural models to study
repeated auctions. In contrast to the studies focusing on procurement auctions with increasing
marginal costs (Jofre-Bonet and Pesendorfer, 2003; Groeger, 2014; Raisingh, 2022), eBay auctions
with single-unit demand (Hendricks and Sorensen, 2018; Bodoh-Creed et al., 2021; Backus and
Lewis, 2023), or oil and gas lease auctions with synergy effects (Kong, 2021), our paper highlights
the unique dynamics arising from intertemporal budget constraints in online ad auctions. The
common theme in the previous studies is that a bidder’s future payoffs depend on whether they win
the current auction. Meanwhile, in our environment, the price they would pay also impacts future
payoffs by affecting the future spending ability. In essence, the current bid not only determines the
probability of winning but also impacts future payoffs through the potential payment. Consequently,
our dynamic bidding problem presents an additional layer of complexity, increasing the relevance
of price on competitive dynamics, as illustrated in our counterfactual simulation.
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In the theoretical auction literature, several papers analyze simultaneous or sequential auctions
participated by budget-constrained bidders (Palfrey, 1980; Benoît and Krishna, 2001; Pitchik and
Schotter, 1988; Pitchik, 2009; Ghosh and Liu, 2019). Our environment and structural model are
substantially different from these theoretical works. We examine an environment that is well ap-
proximated by a finite sequence of simultaneous auctions, and it has a large number of auctions
in every period (at least thousands) and a relatively large number of bidders (around thirty). In
contrast, theoretical studies on simultaneous or sequential auctions often focus on a small number
of auctions and bidders (typically two for each) to investigate equilibrium existence and theoretical
properties. Consequently, the assessment of revenue and welfare implications for various auction
formats in our environment remains theoretically ambiguous. Our counterfactual exercise makes
a novel finding that using the first-price format in this environment benefits bidders with smaller
budgets by increasing the spending rate of bidders with large budgets.

This paper also contributes to the empirical economic literature on online advertising markets
(Yao and Mela, 2008; Athey and Nekipelov, 2011; Celis et al., 2014; Decarolis and Rovigatti, 2021;
Ostrovsky and Schwarz, 2023).2 While Yao and Mela (2008) and Athey and Nekipelov (2011)
highlight the presence of intertemporal budget constraints in the sponsored-search ad market and
their potential significance, they do not incorporate these constraints in their structural models. Our
contribution lies in developing a structural model of dynamic auctions that explicitly incorporates
such intertemporal budget constraints. Furthermore, our paper aligns with Alcobendas, Kobayashi,
Shi and Shum (2023), which investigates the competition effects of privacy protection measures in
the online display ad market, considering firm heterogeneity in their information on consumers. This
paper reinforces the importance of accounting for firm heterogeneity when analyzing competition
in this market, as it evaluates the competitive implications arising from heterogeneous financial
capabilities among bidding firms.

2 Institutional Background

2.1 Display ad market

The recent online advertisement market employs the real-time bidding process to trade a large
portion of impressions, which is the industry term for opportunities to display ads to visitors of
websites. As the name suggests, through the real-time bidding (RTB) process, publishers of websites
and advertisers trade impressions via auctions in real-time as consumers visit these websites. Each

2The computer science and operation research literature has studied the theoretical and algorithmic aspects of
online ad auctions with budget constraints. See Agarwal et al. (2014); Xu et al. (2015); Balseiro et al. (2015, 2020);
Conitzer et al. (2022a,b); Gaitonde et al. (2022). Some of these papers focus on developing bidding algorithms with
budget constraints. Others use stylized models to study revenue considerations of auctions participated by such
algorithms. In contrast, our structural model takes a more general approach by not being tailored to a specific
algorithm. Instead, it captures the broader features of any algorithm that could be deployed in the market, providing
a robust framework for analysis. Furthermore, our model accounts for the critical non-stationarity of the market,
whereas many theoretical studies in this literature assume a stationary environment. This enables our model to reflect
the dynamic nature of the market better. Finally, we contribute a novel empirical analysis of online ad auctions with
budget-constrained bidders by using a real-world dataset and our structural model.
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auction typically lasts only milliseconds. Hence, under the RTB process, impressions are sold
impression-by-impression rather than via signing contracts in advance for bulks of impressions.
Advertisers may display clickable banners or videos after purchasing impressions, and the content of
these advertisements may reflect various characteristics of the impressions. For example, a retailer
may attempt to retarget consumers by displaying products the consumers viewed in the past. One
advantage of the RTB process is that it provides granularity to advertisers for targeting a specific
audience. Rather than buying media or ad slots to a loosely targeted audience, the RTB process
allows advertisers to target a particular audience directly.

Generally, the RTB process involves publishers, ad exchanges, demand-side platforms, and ad-
vertisers.3 An ad exchange is an online server that hosts auctions. These auctions can have various
formats, such as first-price and second-price auctions. Advertisers typically bid in ad auctions
through demand-side platforms because it is technologically complex to target individual impres-
sions and optimally bid for them. A demand-side platform (DSP) is an intermediary that assists
advertisers in targeting and bidding for impressions in ad exchanges, and it typically uses optimized
bidding algorithms because of the fast-paced nature of ad auctions. The sequence of the RTB
process roughly works as follows:

1. A user visits a webpage of a publisher and triggers an impression.

2. The publisher sends an ad request to an ad exchange containing the user information.

3. The ad exchange starts an auction for the impression and forwards the ad request to demand-
side platforms (DSPs).

4. Each DSP decides whether to participate and which advertiser to allocate this impression
among its clients, and then it bids on behalf of the chosen advertiser in the auction held in
the ad exchange.

5. The advertiser represented by the winning DSP gets the impression.

6. Finally, the corresponding advertisement is displayed to the user.

2.2 Marketing campaign and budget settings

When an advertiser wants to start advertising a banner or video ad, they register a marketing
campaign with a DSP. The advertiser sets various key marketing campaign parameters, such as
performance goals (number of clicks, conversions, or impressions), targeting audience, campaign
length, payment scheme, and budget. Advertisers may choose to pay DSPs a fee proportional to
spending or a fee per click/conversion. The budget specifies how much the DSP can spend during
the campaign period to purchase ad opportunities, and generally this budget is evenly split over days
during the campaign. See Figure 1 for an example of a daily budget configuration of a marketing

3In reality, there are also supply-side platforms (SSPs) that support publishers, but we omit them in our explana-
tion for brevity. See Yuan et al. (2013) and Choi et al. (2020) for more detail.
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Figure 1: Settings of a marketing campaign on a major demand-side platform.

campaign. In practice, this daily budget constraint is soft since DSPs often underspend or overspend
by a bit; however, it provides a method for advertisers to discipline the spending behavior of the
DSPs they hire.

Advertisers have several reasons for setting daily budgets. First, it serves as a safeguard against
erroneous spending by the bidding agent. Given the rapid nature of the online ad market, a mistake
can be costly, potentially depleting the advertiser’s entire budget within a mere hour. Second,
advertisers often want to sustain their ad campaign for a longer period than just one day, and the
daily budget constraint is a way to ensure that they advertise roughly evenly during the campaign
period.

3 Data and Stylized Facts

3.1 Data description

This paper employs data of ad auctions held at the Yahoo Ad Exchange for ad opportunities on
Yahoo’s websites. Like other exchanges, the Yahoo Ad Exchange is a clearinghouse that facili-
tates transactions between publishers and advertisers (represented by DSPs), and it runs first-price
auctions. This dataset is suitable for our study for two reasons. First, Yahoo is one of the most
popular websites in the US4, so the data provides a representative sample for our study. Yahoo is
one of the most popular publishers that sell banner ad opportunities, and it also provides a diverse
range of websites, such as Mail, News, and Finance. Therefore, although DSPs may be bidding
for ad opportunities on multiple publishers and even in multiple exchanges, the data provides us a
representative sample of ad auctions faced by advertisers who use banner ads.

4As of May 2021, Yahoo is ranked fourth in the US popularity by Alexa Rank (https://www.alexa.com/topsites/
countries/US), which is an industry-standard website ranking.
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variable mean std min median max

timestamp (PDT) Thu 00:06:05 Mon 00:00:04 Wed 18:01:42 Sun 23:59:57
Bid 1.000 1.682 0.061 0.577 369.070
Winning bid 2.294 3.441 0.061 1.182 369.070
Number of bidders 7.205 4.732 1.000 7.000 25.000
computer 0.953 0.212 0.000 1.000 1.000
optout 0.066 0.248 0.000 0.000 1.000
match_cookie_prop 0.628 0.336 0.000 0.778 1.000

Table 1: Summary statistics

3.2 Summary Statistics

Our dataset contains auctions for impressions generated in the US on Yahoo’s websites during a
week in the second quarter of 2021. Because there can easily be tens of millions of impressions on
just one website per day, we sample our data at a rate of 0.08%. We restrict our attention to a
specific popular banner format for simplification.

Table 1 provides summary statistics on the key variables in our dataset. We observe data on
8,856,603 bids from 1,229,300 auctions, each of which is for an impression triggered by a user5. For
confidentiality reasons, we normalize bids to have a sample mean equal to 1, but we may use dollar
signs for variables relating to bids in this paper. For each auction, we have the auction outcomes,
winning bid (revenue), number of participants (DSPs), and impression characteristics. There are 33
unique DSPs bidding on behalf of 71,011 advertisers in the data; note that each DSP has at most
one bid per auction in our dataset. The statistics for the number of participants indicate that these
bidders (DSPs) enter only a subset of auctions, which suggests entry is an important behavior to
investigate.

The timestamp variable provides the time in Eastern Daylight Time when Yahoo held the
auction; this variable is central in our analysis as we use this variable to determine the temporal
proximity between auctions. We have seven days’ worth of data (Monday to Sunday) collected
during the second quarter of 2021. The variable computer indicates whether the user is accessing
from a computer or phone/tablet; it suggests that about 95% of impressions are from computers.
Two variables correspond to the availability of the user’s information. The variable optout is an
indicator function of the user opting out from behavioral targeting. When a user opts out, advertisers
can no longer target the user based on their personal information; nevertheless, they can still use
the user’s geographic location and contextual information. The variable match_cookie_prop is the
proportion of DSPs that successfully matched the user with records in their databases via third-
party cookies.6 Thus, it is harder for DSPs to track a user with a small match_cookie_prop. Note
that mechanically, we have match_cookie_prop = 0 when the user opted out. Our data show that
opt-out users trigger about 6.6% of impressions, and the average proportion of match_cookie_prop

5This indicates there were roughly 1.5 billion auctions on Yahoo during this period.
6We use an aggregate measure of cookie match since cookie-match information is unavailable for two DSPs.
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variable value n

Chrome 729484
Edge 220771
Safari 138794
Firefox 103956

browser

(27 other browsers) 36295

Site-1 495951
Site-2 243124
Site-3 165875
Site-4 113272
Site-5 71922
Site-6 35325
Site-7 32163
Site-8 22518
Site-9 21725
Site-10 9825
Site-11 9275

sitename

(5 other sites) 8325

Table 2: Frequency table for categorical variables

is about 63%.7

In addition, although we do not report their summary statistics for confidentiality, our dataset
contains user characteristics drawn from Yahoo’s database of user profiles, which are constructed
based on users’ cookies and Yahoo accounts (if they exist). Although bidders do not directly observe
the content of this database, these variables are good proxies for user information bidders have ac-
cess to. We have users’ gender and age information. The gender variable is either Unknown, Male,
or Female, and the age variable is either Unknown, 25 to 44, or 45 plus. The variable seg_size gives
the number of market segments that the user belongs to; these segments predict the user’s interests
in particular topics, such as automobiles and sports. The variables total_rev, num_month_sold,
and avg_month_sold summarize the past monetization of impressions generated by the user. The
variable total_rev is Yahoo’s total revenue from selling the user’s past impressions, which is stan-
dardized to have mean zero and variance one for confidentiality. The variable num_month_sold

counts the number of months when Yahoo monetized the user, and avg_month_rev is the average
revenue per month calculated with the two former variables. Finally, the variable profile_length

measures in days how long the user profile existed in the database.
Table 2 provides the frequency table for two key categorical variables: browser and site name

(anonymized for confidentiality). We observe that most impressions come from Chrome, followed
by Edge, Safari, and Firefox. The table also shows the range of websites within the Yahoo domain,
and we see that although each website has a significant number of observed impressions, there is a

7See Alcobendas, Kobayashi, Shi and Shum (2023) for how privacy protection measures impact ad auctions in this
market.
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Figure 2: Geographic distribution of impressions. Impressions from Alaska and Hawaii are excluded
from the figure. The labels are for the top 20 cities with the highest number of impressions.

considerable variation in their total visits.
Figure 2 shows the geographic distribution of impressions graphed based on their geographic

coordinates. We observe users accessing from a variety of regions, and many impressions come from
cities with high population density, such as New York and Los Angeles. In addition to geographic
coordinates, we observe the state and city where impressions originate from; these variables are used
as control variables in our reduced-form results.

3.3 Stylized Facts

We summarize some stylized facts in this market that are consistent with how bidders in this market
dynamically participate in ad auctions with budget constraints.

Figure 3 shows the time-series plots from an average weekday of the number of auctions, average
bid, average number of participants, and average winning bid per 5 minutes on a weekday. We find
that these statistics show similar patterns on each day in our data. Since the supply of advertising
opportunities is directly tied to online traffic, the frequency of auctions is the highest around noon
and the lowest around 3 AM.
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Figure 3: Time-series plots from an average weekday for the number of auctions (impressions),
average bid, average number of participants, and average winning bid per 5-minute interval. The
horizontal axis is the time in Eastern Daylight Time.

3.3.1 Observation 1: Declining Price

In Figure 3, we observe that the average bid, average number of bidders, and average winning bid
(price) have a declining pattern. This is consistent with bidders having less purchasing power from
spending their daily budgets. Because they have less remaining budgets as time goes on, they enter
auctions at a lower rate and submit more conservative bids.

The literature on sequential auctions has studied declining price patterns in other settings exten-
sively. This phenomenon might initially appear as an anomaly, seemingly presenting an arbitrage
opportunity, but prior studies have identified several mechanisms that can lead to declining prices
in sequential auctions. In particular, Engelbrecht-Wiggans (1994); Bernhardt and Scoones (1994);
Gale and Hausch (1994) find that a declining price can manifest in sequential auctions participated
by single-unit demand bidders whose valuations are random across objects. Our market environ-
ment shares some similarities with these studies, as bidders operate under daily budget constraints,
limiting their demand, and there is a significant level of heterogeneity across impressions, which are
also horizontally differentiated.

The theoretical studies find that a declining price can occur in sequential auctions due to specific
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factors. First, there is less competition as time progresses due to diminishing demand. Second,
bidders with high valuations also face high delay costs. These costs arise because, as time progresses,
there is a chance they will encounter worse objects due to randomness, and they are not guaranteed
to win in later periods. Hence, these high-valuation bidders find bidding worthwhile even in earlier
periods, where competition is more intense.

3.3.2 Observation 2: Price jumps when budgets are renewed

−0.2

−0.1

0.0

0.1

0.2

11:00pm 11:30pm 12:00am 12:30am 01:00am
Time

Log of Winning Bid (Price)

Figure 4: Regression discontinuity plot of the log of winning bid (price). We fit cubic polynomials
before and after the budget renewal time.

The intra-day declining price pattern is accompanied by a jump in bidders’ bidding behavior
when their daily budgets are renewed. Using 12AM in the eastern US time as a discontinuity point8,
we perform a regression discontinuity analysis to examine the effect of daily budget renewal on the
bidding behavior. We focus on the two-hour time interval around the discontinuity point. In Figure
4, we find that there is a significant effect on the average price when the daily budget constraints
are reset. We find that bidders become more aggressive in their bids when they are supplied with
new budgets from advertisers.9 Table 7 in Appendix A.1 shows the regression discontinuity results

8We find that most bidders’ daily budgets are renewed at 12AM in the eastern US time since typically the renewal
time is set at 12AM in advertisers’ local timezone and most advertisers are in the eastern region. In principle, we
should see a change in bidding behavior at 12am in the western US time, for example; however, we do not observe
such a consistent significant jump in our data at that time.

9As detailed in the preceding section, advertisers enforce daily budget constraints on their bidding agents to
mitigate the risk of erroneous overspending and to maintain a consistent presence throughout their ad campaign
period. Moreover, the practice of resetting these constraints at the end of each day offers convenience in terms of
billing and accounting processes.
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where we control for a rich set of observed auction characteristics, which show that ceteris paribus,
the price in ad auctions jumps by about 40% on average when budgets are renewed.

3.3.3 Observation 3: Price declines when the number of auctions is high

Figure 5: Scatter plots of the average bid, average number of participants, and average winning
bid (price) versus the number of impressions per 5-minute interval. The blue curves correspond to
linear regressions.
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In Figure 5, we aggregate auctions in each 5-minute time interval, and we plot the number of
auctions within the interval versus the average bid, average number of participants, and average
winning bid within the interval. Figure 5 shows that when the number of auctions increases, the
average bid, average number of entrants, and average winning bid decrease, and vice versa. This
inverse relationship is consistent with budget constraints. When there is a large number of auctions,
bidders risk hurting their future spending ability or violating budget constraints by winning too
many auctions if they submit competitive bids. Thus, they need to depress their bids to mitigate
this risk.

This relationship is robust to controlling for the rich observed heterogeneity of impressions
and various fixed effects. Table 8 in Appendix A.1 shows the results from regressing bids and
entry decisions on the number of auctions and control variables. As control variables, we include
numerous impression characteristics and fixed effects for the websites, browsers, cities, day-hour,
DSPs, and advertisers. We include Day-Hour FE to remedy any time-variant unobserved quality of
impressions. The reduced-form results show that the coefficient of log of the number of auctions per
5-min interval is negative and statistically significant in both the bid and entry regressions. Hence,
bidders become more conservative in their entry and bids when there are more auctions.

4 Structural Model

Motivated by the institutional settings and the stylized facts from the data, we formulate a structural
model of forward-looking bidders making entry and bid decisions dynamically while facing a stream
of auctions.

4.1 Model Setup

To focus on the intra-day dynamics coming from the daily budget constraint and cyclical supply,
we model the market on each day as an isolated strategic environment. On each day, there are
i = 1, . . . , N bidders, and each bidder’s initial budget wi1 = wi is independently and privately
drawn from Fw at the beginning of the day. These bidders face a sequence of simultaneous auctions
for t = 1, . . . T periods. The last period T is determined and common knowledge; it corresponds to
the final period before the end of the day.

At the beginning of each period t, bidders observe the number of auctions Kt, which is drawn
from F

(t)
K , which is time specific. Before his entry costs and valuations are realized for these auctions,

each bidder i commits to an entry threshold strategy τit ≥ 0 and bid strategy bit : R+ → R+ that
are used for each auction k = 1, . . . ,Kt. For each auction k, an entry cost Cikt is independently
and privately drawn from FC , and bidder i enters if Cikt ≤ τit. If he enters, then valuation Xikt

is independently and privately drawn from FX , and i submits bit(Xikt). To make the optimization
problem tractable, we assume that bid strategies take the flexible form bγ(x) =

∑J
j=1 γjhj(x),

where hj(x) are a set of basis functions (such as polynomials or splines) and γ ∈ RJ . Note that
this assumption imposes minimal restrictions beyond ensuring smoothness while accommodating a
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wide range of bidding strategies.10

Given the submitted bids, the spot auction rule determines the winner and price for each auction
k. With our institutional environment in mind, we suppose that the spot auction follows the first-
price auction. Hence, for each auction k, the winner is the highest bidder, and the price is his bid
maxiBikt where Bikt = b(Xikt | γit). Then, each bidder receives the goods they won and earns∑Kt

k=1 1{Cikt ≤ τit}1{Bikt > B−ikt}Xikt and pays Sit =
∑Kt

k=1 1{Cikt ≤ τit}1{Bikt > B−ikt}Bikt.
In sum, as the stage payoff, the bidder receives

Kt∑
k=1

1{Cikt ≤ τit} (1{Bikt > B−ikt} (Xikt −Bkt)− Cikt)

In addition, the bidder’s budget for period t+ 1 is updated as wit+1 = wit − Sit.
After period T , bidders suffer a penalty of ηQ(wiT+1), where η > 0. Q(w) is a differentiable

function such that it is zero when w > 0, meaning that the budget constraint is satisfied. This
penalty captures any negative consequences associated with violating the budget constraint. In our
empirical application, we set Q(w) = min(0, w)2 to capture the reputation damage that the bidding
agent suffers by violating the daily budget constraints imposed by its advertisers.11

The following summarizes the sequence of the game:

1. Each bidder i’s initial budget wi1 = wi is independently and privately drawn from Fw.

2. For each t = 1, . . . , T ,

(a) Bidders observe the number of auctions Kt, which is drawn from F
(t)
K .

(b) Each bidder i chooses bid strategy bit : R+ → R+ and entry threshold strategy τit ≥ 0.

(c) For each auction k = 1, . . . ,Kt,

i. i ’s entry cost Cikt is independently and privately drawn from FC .

ii. i enters if Cikt ≤ τit

iii. Each entrant’s valuation Xikt is independently and privately drawn from FX .

iv. Each entrant submits bid Bikt = bγit(Xikt)

v. The highest bidder gets the good and pays his own bid.

(d) Each bidder’s remaining budget is subtracted by his spending, wit+1 = wit − Sit.

3. Bidders suffer penalty ηQ(wiT+1)

4.2 Best-Response Analysis

We begin our analysis by assuming the form of the bidder’s belief over the strategic behavior of
each other and analyzing the best-response problem. When bidders strategize, the key object

10In our empirical application, we use cubic spline basis functions for hj .
11The penalty also accommodates other contexts. For example, if there is a borrowing cost from spending beyond

the available cash, we can set Q(w) = min(0, w) with η representing the interest rate. In addition, setting η = ∞
allows us to incorporate hard budget constraints.
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that matters is the distribution of competing bids in each auction (accounting for entry). This
distribution is influenced by the time period, the number of auctions, and the remaining budgets
of competing players. In our empirical application of online banner-ad auctions held at Yahoo’s ad
exchange, the remaining budgets of players are not public, and when a bidder loses in an auction,
they do not get the information of the identity of the winner and the price he paid. Hence, there
is very little information a bidder has about other players’ spending. Leveraging this asymmetric
information, we assume that in period t with Kt auctions, bidders believe that the highest rival
bid in each auction is independently drawn from distribution Ψt(·|Kt). In the next subsection, we
endogenize this distribution by formulating our equilibrium concept.

The idea is that although bidders do not learn each other’s private state variable (remaining
budget), they can use the interactions from previous games to forecast the competition in each
period t and how it changes with respect to the supply level (number of auctions). Not only is
this assumption reasonable, but it also greatly improves the tractability of the dynamic game. As
our application has a relatively large number of bidders (around thirty), a fully rational belief with
complete information over rivals’ budgets would lead to a high-dimensional state space, which would
make both solving the best-response problem and solving for equilibrium computationally infeasible.
The assumption we make over the belief over competing bids turns the best-response problem into
a finite-time horizon dynamic problem with two state variables: the number of auctions and the
bidder’s own remaining budget.

Now, given the belief, we look at a generic bidder’s strategic problem while taking other bidders’
strategies as given. This best-response problem provides us insights into the tradeoffs bidders face,
and it also forms the basis of our estimation method. We proceed by backward induction and analyze
the Bellman formulation. Given the number of auctions KT and bidder i’s remaining budget wiT ,
his objective is

max
γ,τ

E

[
KT∑
k=1

1{CikT ≤ τiT } (1{bγ(XikT ) > B−ikT } (XikT − bγ(XikT ))− CikT )

]
− E [ηQ(wiT+1) | γ, τ ]

= max
γ,τ

KTFC(τ) (E [ΨT (b
γ(X) | KT )(X − bγ(X))]− E[C | C ≤ τ ])− E [ηQ(wiT − SiT ) | γ, τ ]

Denoting this maximized value as VT (K,w), the Bellman formulation of the objective of period
t = 1, . . . , T − 1 is given by

max
γ,τ

KtFC(τ) (E [Ψt(b
γ(X) | Kt)(X − bγ(X))]− E[C | C ≤ τ ]) + E [EVt+1(wit − Sit) | γ, τ ] (1)

where EVt+1(w) = E[Vt+1(Kt+1, w)] is the ex-ante value function in which the number of auctions
is averaged out with distribution F

(t)
K . Given its similarity to the last period’s objective, with a bit

of abuse of notation, we denote EVT+1(w) = −ηQ(w) for the rest of our analysis.
Now, we analyze the first-order necessary conditions for the bidding problem while assuming
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differentiability. The one with respect to the bid function parameter γ is given by

E

[(
X − Ψt(b

γ(X) | Kt)

Ψ′
t(b

γ(X) | Kt)
− bγ(X)

)
︸ ︷︷ ︸

Static FOC

Ψ′
t(b

γ(X) | Kt)∇γb
γ(X)

]

+
1

KtFC(τ)
∇γE [EVt+1(wit − Sit) | γ, τ ]︸ ︷︷ ︸

Dynamic Tradeoff

= 0

Meanwhile, the first-order condition with respect to the entry threshold τ is

τ = E [Ψt(b
γ(X) | Kt)(X − bγ(X))]︸ ︷︷ ︸

Static Threshold

+
1

KfC(t)

∂

∂τ
E [EVt+1(wit − Sit) | γ, τ ]︸ ︷︷ ︸
Dynamic Tradeoff

The first-order conditions mainly consist of the static component and dynamic component. The
optimality condition for the bid strategy contains an expression that is typically found in static
first-price auction models (Guerre et al., 2000), along with an additional element resulting from
the dynamic budget constraint. In particular, we observe that the state variables (Kt, wit) directly
affect only the latter component. Similarly, the first-order condition for the participation strategy
implies that the optimal threshold equals the static entry threshold determined by the expected
payoff from an auction (Li and Zheng, 2009) and an additional dynamic component.

The dynamic component illustrates how entry and bids are influenced by dynamic tradeoffs.
Increasing the likelihood of participation and bids impacts the continuation value by 1) making
it more likely to win more auctions and 2) increasing the realized spending. Because having less
remaining budget negatively affects his future surplus, the bidder must internalize this tradeoff and
adjust his entry rate and bids further down from the statically optimal ones. Dynamic markdowns
are a common feature in structural models that deal with sequential auctions, as demonstrated in
prior research (Jofre-Bonet and Pesendorfer, 2003; Bodoh-Creed et al., 2021; Kong, 2021; Backus
and Lewis, 2023). However, a notable departure in this study is the consideration that in earlier
models, the option value was primarily influenced by whether one won an auction or not, while in
our model, the option value is also impacted by the amount paid for a win.12

Now, we consider how the optimal strategies react to changes in the state variables under this
model. When the number of auctions Kt changes, it impacts the dynamic component. Specifically,
a higher Kt tends to result in larger spending from this period while keeping the strategies the
same. Consequently, ceteris paribus, an increase in Kt introduces a force to make the strategies
more conservative, consistent with the empirical pattern that bidders tend to be less aggressive
when more auctions are present.

The current remaining budget wit also appears in the first-order conditions only through the
12As demonstrated in our counterfactual analysis, this feature makes the price distribution relevant in shaping

strategic behavior within our environment.
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dynamic component. Ceteris paribus, decreasing wit directly shifts down wit+1. The ex-ante value
function EVt+1(·) typically exhibits a concave increasing pattern, as having a larger budget aids the
bidder in securing more future opportunities, albeit at a diminishing rate. Consequently, the reduc-
tion in wit amplifies the sensitivity of the continuation value to current-period spending, prompting
the bidder to adopt more conservative strategies. The relationship between the optimal strategies
and the remaining budget wit highlights that the variability across bidders in their entry and bid
decisions results from factors beyond random entry costs and valuations; it is also influenced by
bidders’ remaining budgets. This suggests that the size of each bidder’s budget introduces hetero-
geneity in their behaviors.

The first-order necessary conditions highlight how this environment differs from the standard
auction environment. If the budget constraint does not matter (i.e., if η = 0), the dynamic prob-
lem collapses into a series of static bidding problems, and the state variables Kt and wit become
irrelevant. However, with the budget constraint, the bidder needs to weigh the stage payoff and the
option value from having more budget for the next period, and this tradeoff is influenced by the
state variables.

4.3 Equilibrium

We now establish our solution concept by formalizing how a bidder’s belief over competing bids
is constructed. A pure strategy equilibrium of our model consists of time-dependent strategies
(γt(K,w), τt(K,w)) and bidders’ beliefs regarding competing bids in each auction Ψt(b | K) that
satisfy the following conditions:

1. (Optimality) For each period t and state variables (Kt, wit), (γt(K,w), τt(K,w)) are a best
response given the belief Ψt(b | K), meaning they solve the problem specified in (1).

2. (Consistency)

Ψt(b | K) = E

∏
j ̸=i

Pr(j does not enter, or j enters and submits Bjt ≤ b | K,wjt)


= E

∏
j ̸=i

(
1− FC(τt(K,wjt)) + FC(τt(K,wjt))FX(b−1(b | γt(K,wjt)))

)
where the distribution of state variables (remaining budgets) (wjt)j ̸=i is determined by the

initial budget distribution FW , the distribution of the number of auctions {F (s)
K }s=1,...,t−1, the

strategies employed by bidders {(γs(K,w), τs(K,w))}s=1,...,t−1, and the state transition rule.

The first condition requires that bidders are acting optimal given their belief, and the second
condition ensures that the current belief is consistent with the optimal strategies they have employed
in previous periods.13 If bidder i had the knowledge about other bidders’ remaining budgets (wjt)j ̸=i,

13Our solution concept is similar to the large market equilibrium concepts used in prior works that study dynamic
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his fully rational belief over competing bids would be the expression inside the expectation in the
second condition. However, given that bidders’ initial budgets are private and they do not observe
each other’s spending, we require that their belief is averaged out with respect to the equilibrium
state distribution of (wjt)j ̸=i. The rationale for this is that since a separate game occurs each day,
bidders can rely on historical data regarding the intraday pattern of competition to formulate their
participation and bidding strategies.14

In our analysis, we assume that a pure strategy equilibrium of the dynamic game exists and is
unique given the model primitives, and we assume that each day in our dataset is independently
sampled from this equilibrium.15 In Appendix A.4, we present a computational algorithm for
solving the dynamic game using our solution concept. This algorithm alternates between two steps:
first, obtaining the belief Ψt by simulating the path of state variables using the given strategies,
and second, obtaining the best response strategies given the belief through backward induction.
Importantly, we find that our algorithm converges to the same equilibrium from various initial
points, providing some support for our assumption of equilibrium existence and uniqueness. The
formal proof of equilibrium existence and uniqueness is left for future research, as the conventional
approach of backward induction does not apply to our environment. This is due to the fact that
the equilibrium strategy in period t depends on the strategies in periods 1 through t− 1, given that
these strategies determine the belief regarding competing bids in period t.

4.4 Model Discussion

In our empirical application of the model to the online display advertising market, our analysis of
dynamic strategic behavior abstracts away from two features of the market. First, we treat each
demand-side platform (DSP) representing multiple advertisers as one budget-constrained bidder. In
reality, each advertiser has a separate campaign budget, and DSPs need to make sure the constraint
of each advertiser it represents is satisfied. However, modeling this relationship between DSPs and
advertisers goes beyond the scope of this paper, and we leave it as a potential avenue for future
research and extension of our model.

Second, while display ad auctions occur continuously in the real market, we discretize time and
assume that multiple auctions happen simultaneously in each period. Hence, our model features
a sequence of simultaneous first-price auctions. We make this assumption because of tractability,
and often these auctions can even occur at the same time or within a very short time frame. This
approximation aligns with the practices of DSPs, which also employ a discrete-time framework and

games (Hopenhayn, 1992; Krusell and Smith, 1998; Weintraub et al., 2008; Bodoh-Creed et al., 2021; Backus and
Lewis, 2023).

14One possible way to allow for firms learning each other’s state within a game is to adapt the moment based
Markov equilibrium proposed by Ifrach and Weintraub (2017) to our model. Their solution concept permits firms to
track the state variables of a few dominant firms and form beliefs on the state variables of other firms conditional
on their aggregate statistics. See also Fershtman and Pakes (2012); Asker et al. (2020) for tractable ways to model
players learning each other’s state when there is persistent private information.

15Our assumption of equilibrium existence and uniqueness parallels the existing empirical works on non-standard
auction games (Fox and Bajari, 2013; Kim et al., 2014; Saini, 2012; Gentry et al., 2020).
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assume that auctions within the same time interval happen simultaneously.

5 Estimation

Using our novel proprietary dataset of online display ad auctions, we estimate the primitives of the
structural model of dynamic auctions with budget-constrained bidders. The model primitives are
the distribution of the number of auctions F

(t)
K for each period t, distribution of entry costs FC ,

distribution of valuations FX , budget constraint parameter η, and bidders’ budgets (wi)
N
i=1.

Each day in our dataset corresponds to one independent game in our structural model, and we
consider hourly periods, giving us t = 1, . . . , T = 24 periods in a day. Our dataset includes a total
of N = 33 bidders. For each day d, we observe the number of auctions Ktd for each hour t, as well
as the spending per period Sitd and bids (Biktd)

Ktd
k=1 for bidder i during each hour t. Note that we

have Biktd = ∅ if bidder i did not enter auction k in period t on day d. We suppress the day index
when there is no confusion.

Our structural model, being a dynamic game, faces a common challenge in structural estimation
that direct estimation requires solving for the equilibrium for every set of structural parameters. To
circumvent this computational burden during the estimation process, we adopt a two-step approach,
following the literature of structural estimation of dynamic games (Bajari et al., 2007; Aguirregabiria
and Mira, 2007; Jofre-Bonet and Pesendorfer, 2003). Assuming that the market is in equilibrium
under our solution concept, we estimate our structural model by leveraging bidders’ best-response
problem given their rivals’ equilibrium behavior. In the first step, we estimate the time-dependent
distribution of the number of auctions F

(t)
K , along with the reduced-form entry probability and bid

distribution.16 In the second step, we solve for bidders’ entry and bid strategies (γt(K,w), τt(K,w))

as best responses to rivals’ estimated behaviors from the first stage and estimate the structural
parameters through maximum likelihood estimation. This sequential approach allows us to avoid
the need for solving the equilibrium and simulating the equilibrium state distribution during the
estimation process.

5.1 First Stage

In the first stage, for each hour t, we estimate the distribution of the number of auctions F (t)
K and the

belief on competition bids Ψt(· | K), which is the central equilibrium object in our structural model.
We assume that the number of auctions comes from the negative binomial distribution17 with time-
specific parameters, capturing the daily pattern seen in Figure 3. We obtain the belief on competing
bids Ψt(· | K) by deriving it from the entry probability and bid distribution estimated from the

16These objects essentially serve as the conditional choice probability (CCP), using the terminology commonly
employed in dynamic structural models. One key distinction from conventional approaches is that we have continuous
actions instead of discrete actions.

17The negative binomial distribution is more flexible than the Poisson distribution since it allows the mean and
variance to be different.
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data. For tractability and numerical convenience, we use parametric forms to estimate them.18 For
the entry probability, we use logistic regression of entry outcome on the number of auctions Kt with
time-period fixed effect to estimate it, meaning that entry probability is logistic(αentry

t +βentry
K Ktd).

For the bid distribution, we assume Biktd ∼ LogNormal(αbid
t + βbid

K Ktd, σt). Then, we derive the
distribution on competing bids Ψt(· | K) by using these estimated objects.

5.2 Second Stage

In the second stage, we estimate the distribution of entry costs FC , distribution of valuations FX ,
budget constraint19 parameter η ∈ R, and bidders’ budgets (wi)

N
i=1. To facilitate our estimation, we

introduce parametric assumptions for FC and FX . We assume C ∼ TruncatedNormal(µC , σC) and
X ∼ LogNormal(µX , σX). Our set of structural parameters is denoted as θ = (µC , σC , µX , σX , η, (wi)

N
i=1).

We estimate these structural parameters through maximum likelihood estimation with an inner loop
solving for bidders’ entry and bid strategies (γt(K,w), τt(K,w)) as best responses to the estimated
belief on competing bids Ψ̂t(· | K) from the first stage. We use the best-response problem to esti-
mate the model as if it is a single-agent continuous-choice dynamic problem with a finite horizon.
This avoids the computational burden of computing for equilibrium during estimation.

For each set of structural parameters θ, the inner-loop solves the best-response problem in
(1) for (γt(K,w; θ), τt(K,w; θ)) to evaluate our likelihood function. The best-response problem is
solved as dynamic programming with a finite horizon via backward induction. The state variables
are the number of auctions Kt and bidder’s remaining budget wit. Note that we do not observe
budgets in our dataset, so we obtain wit by setting wit = wi−

∑t−1
s=1 Sis using the observed spending

per period Sit. The central object of our dynamic programming is the ex-ante value function
EVt(w) = EKt [Vt(Kt, w)]. We approach this by solving the Bellman formulation in (1) over a grid
of the state variables K and W for t = T, . . . , 1.20 We create the grid of the first state variable by
taking random draws from the estimated distribution F̂

(t)
K from the first stage; this grid is time-

dependent. For the second state variable w, because this is a continuous variable, we create a grid
by taking points in [a, b] where a < 0 is a negative value that is unlikely to happen in equilibrium but
nevertheless important for determining the shape of the value function, and b > 0 is a value above
the maximum observed total spending. To evaluate the ex-ante value function outside of the grid
and to obtain its derivative, we use a cubic spline with a monotonicity constraint for interpolation.

For each set of structural parameters θ, the above procedure provides us the entry thresholds
τt(K,w; θ) and bid strategies b(· | γt(K,w; θ)) for each K, w, and t.21 Note that under the true θ,
each observed bid Biktd satisfies Biktd = b(Xiktd | γt(K,w; θ)) where Xiktd is the valuation, meaning

18Using parametric assumptions on the entry probability and bid distribution follows prior empirical works on
one-shot auctions with entry (Athey et al., 2011; Krasnokutskaya and Seim, 2011).

19To review, when bidders violate their budget constraints, they suffer the penalty ηQ(wiT+1) where Q(w) =
min(0, w)2 and wiT+1 is the remaining budget at the end of the game.

20Each optimization problem is solved by using the first-order conditions outlined in Section 4.2. We ensure global
optimality by using multiple initial points.

21Note that in our empirical application, we set b(x | γ) =
∑J

j=1 γjhj(x) where hj are a cubic spline basis functions
with monotonicity constraints.
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Xiktd = b−1(Biktd | γt(K,w; θ)). This relationship allows us to “back out” valuations by applying
the inverse bid strategy on observed bids (Guerre et al., 2000). Given the best-response strategies,
we derive the entry probabilities and density of the bid distribution to compute the log-likelihood.
The entry probability is expressed by

p̃t(Kt, wit; θ) = 1− FC(τt(Kt, wit; θ);µC , σC)

and the bid density is

g̃t(B | Kt, wit; θ) = fX(b−1(B | γt(Kt, wit; θ));µX , σX)(b′(B | γt(Kt, wit; θ)))
−1

where the right-most term comes from the change of variables from valuations to bids. Finally, we
can calculate the likelihood from the observed data by using these objects.

5.3 Identification

The identification of our structural parameters, especially the budget constraint parameter η and
bidders’ budgets (wi)

N
i=1, relies on the exclusion restriction that bidders’ valuations are independent

of the state variables, which are the number of auctions and their remaining budgets. This as-
sumption is required for disentangling the effect on bids from valuations and intertemporal budget
constraints. For instance, when bids are low, we must determine whether this is due to low valua-
tions or increased dynamic tradeoffs. The exclusion restriction enables us to identify the parameters
relevant to budget constraints by using the correlation between bids and the state variables, which
impact the dynamic tradeoffs.

For illustration, our assumption implies the following conditional moment conditions:

E[b−1(B | γt(Kt, wit; θ))− E[Xikt | θ] | Zit] = 0

where Zit is remaining budget wit or number of auctions Kt. This essentially means that the
valuations backed out via the inverse bid function should not be correlated with our instruments.
Such an exclusion restriction with other instrumental variables has been used in the empirical
auction literature to test a model (Haile et al., 2003) or identify structural parameters (Guerre
et al., 2009; Gentry et al., 2020).

The exogeneity assumption is plausible for our market environment as typically demand-side
platforms (bidders) and advertisers compute their valuations for impressions based on a combination
of the probability of clicking/making a sale and their value of such events, and this probability is
computed based on the contextual and behavioral data of that user alone. Hence, the short-run
supply level of impression (the number of auctions) and their current campaign budgets should not
directly influence how they value advertising opportunities.

Our structural framework can accommodate potential sources of unobserved heterogeneity that
might interfere with our identification strategy above. First, valuations could be correlated with
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the number of auctions through a time-varying unobserved heterogeneity. For instance, the average
user browsing the internet during the daytime could be different from the average online user at
night, and the supply levels are different across these time periods. One possible remedy for this
issue is to allow time-dependent valuation distribution F

(t)
X , analogous to introducing time fixed

effects in standard econometric models. The second potential confounder is that valuations could
be correlated with bidders’ budgets through a bidder unobserved heterogeneity. Advertisers with
larger budgets may also happen to have higher valuations for impressions. We can alleviate this issue
by classifying bidders into groups and estimating structural parameters for each group separately.
For both of these situations, identification is possible by using the variation across different days
(or games).

6 Estimation Results

6.1 First-Stage Estimates

First, we present the parameter estimates for the distribution of the number of auctions F
(t)
K and

the estimated reduced-form entry probability and bid distribution. In figure 6, we illustrate the
probability mass function of F̂

(t)
K , which reflects the daily supply pattern that is also shown in

Figure 3.22 The estimated distribution also illustrates how the variance of Kt changes over time.

Figure 6: The probability mass function of the estimated distribution of the number of auctions
F̂

(t)
K for each time period t.

22The table containing the estimated parameters are in Appendix A.2.
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Entry Probability Bid Distribution

βK -3.627e-5 (5.485e-7) -3.417e-5 (3.852e-7)

αentry
t αbid

t σt

t = 1 -1.354 (0.003) -0.365 (0.003) 0.900 (0.0019)
t = 2 -1.278 (0.004) -0.325 (0.003) 0.893 (0.0022)
t = 3 -1.263 (0.004) -0.291 (0.003) 0.902 (0.0027)
t = 4 -1.283 (0.005) -0.224 (0.004) 0.947 (0.0033)
t = 5 -1.246 (0.005) -0.196 (0.004) 0.944 (0.0033)
t = 6 -1.158 (0.004) -0.128 (0.003) 0.950 (0.0026)
t = 7 -1.124 (0.003) -0.146 (0.002) 0.915 (0.0018)
t = 8 -1.117 (0.004) -0.226 (0.002) 0.872 (0.0012)
t = 9 -1.156 (0.005) -0.287 (0.004) 0.838 (0.0009)

t = 10 -1.239 (0.008) -0.347 (0.005) 0.823 (0.0008)
t = 11 -1.294 (0.008) -0.383 (0.006) 0.808 (0.0008)
t = 12 -1.322 (0.009) -0.410 (0.006) 0.800 (0.0007)
t = 13 -1.354 (0.009) -0.441 (0.006) 0.790 (0.0008)
t = 14 -1.363 (0.008) -0.453 (0.006) 0.785 (0.0008)
t = 15 -1.357 (0.008) -0.452 (0.005) 0.790 (0.0008)
t = 16 -1.367 (0.008) -0.470 (0.005) 0.782 (0.0008)
t = 17 -1.376 (0.007) -0.465 (0.005) 0.782 (0.0008)
t = 18 -1.365 (0.006) -0.458 (0.004) 0.785 (0.0009)
t = 19 -1.380 (0.005) -0.455 (0.003) 0.793 (0.0010)
t = 20 -1.371 (0.005) -0.452 (0.003) 0.793 (0.0011)
t = 21 -1.335 (0.004) -0.387 (0.003) 0.831 (0.0012)
t = 22 -1.340 (0.004) -0.431 (0.003) 0.825 (0.0012)
t = 23 -1.347 (0.004) -0.450 (0.002) 0.830 (0.0014)
t = 24 -1.359 (0.003) -0.464 (0.002) 0.837 (0.0016)

Table 3: Reduced-form estimates of entry probability logistic(αentry
t + βentry

K (Ktd − Kt)) and bid
distribution LogNormal(αbid

t + βbid
K (Ktd −Kt), σt) where Kt is the sample average per period. We

de-mean Ktd for an illustration purpose.

Table 3 shows the estimated parameters of the reduced-form entry probability and bid distribu-
tion. Notably, in line with the second stylized fact reported in Section 3.3, the estimated coefficient
on Kt indicates that the entry probability and bid distribution are negatively impacted by an in-
crease in the number of auctions, all else being equal. Furthermore, consistent with the first stylized
fact, the estimated intercepts illustrate a declining trend in the entry probability and bids.

6.2 Second-Stage Estimates

Next, we present the estimates for the structural parameters θ = (µC , σC , µX , σX , η, (wi)
N
i=1) from

the second stage. Table 4 presents the estimates of (µC , σC , µX , σX , η), along with their estimated
standard errors.
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Parameters Estimate SE
µC -11.3776 0.0091
σC 7.2533 0.0062
µX 0.9046 0.0007
σX 1.0950 0.0006
η 0.6457 0.0084

Table 4: Estimates of Structural Parameters. The standard errors are computed using the White
(sandwich) estimator using the numerical Hessian and Jacobian.

First, note that the estimate for η is positive and statistically significantly different from 0. Since
bidders’ dynamic bidding problem collapses to a series of static bidding problems if η = 0, this
confirms that bidders care about the budget constraint and hence act dynamically. The estimated
model reveals that, within the dataset, the typical bidder exceeds their budget approximately 26%
of the time. When such overspending occurs, it amounts to an average of around 8% of their
budgets, indicating that these bidding agents occasionally exceed the budgets set by their clients
(advertisers) in pursuit of maximizing their payoffs while avoiding excessive violations.

Figure 7: Histogram of the estimated budgets (ŵi)
N
i=1

Figure 7 shows the histogram of the estimated daily budgets (ŵi)
N
i=1 of bidders. The budget

distribution is significantly skewed, and it reflects how the online advertising market is concentrated.
In particular, the distribution shows that there are a few large players and many smaller players.
The former type includes large tech companies like Google and Amazon.
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6.3 Dynamic Incentive

Given the estimated structural model, we can analyze the magnitude of the dynamic incentives
created by the budget constraint. First, we look at the markdown (valuation minus bid) obtained
by the model. Averaging across time periods, bidders, and days, we find that the markdown is
3.76, which is 83.5% of the expected valuation (4.5). This markdown reflects both the fact that
bidders face first-price auctions and dynamic incentives. To decompose these two different incentives,
we simulate counterfactual static bids while taking the probability of winning as in the data but
removing the dynamics created by the budget constraint. We find that the counterfactual static
markdown is 2.67 on average, and it is 59.4% of the expected valuation. This highlights that facing
the first-price format for each auction leads bidders to shade their bids by 59.4% from valuations, and
the dynamic budget constraint leads them to shade further by 24.2% on average. This demonstrates
that dynamic incentives in this market are significant for the bidders. Figure 8 shows the relationship
between the daily budget and the average markdown. We see that the heterogeneity in budgets, in
turn, leads to heterogeneity in how aggressive bidders are. We find in our counterfactual analysis
(Section 7) that this competitive variation has a substantial welfare implication.

Figure 8: Budget vs %Average Markdown. Each point represents a bidder.

Our structural model also endogenizes entry, so it also allows us to quantify the effect of budget
constraints on bidders’ entry decisions. The static simulation above also provides us the counter-
factual static entry probabilities, purely coming from stochastic entry costs. The average entry
probability fitted by the model is 19.4%, and the average static entry probability is 45.1%, which
again illustrates the importance of capturing the dynamic budget constraint to analyze bidders’
behavior in this market. Figure 9 shows the relationship between the daily budget and the average
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entry probability, and again it shows that heterogeneity in budgets leads to heterogeneity in entry
behaviors.

Figure 9: Budget vs Average Entry Probability. Each point represents a bidder.

Finally, we utilize the estimated structural model to decompose the dynamic incentive into two
components: one arising from the diminishing budget and the other from approaching the terminal
period. In the data, we observe that the average bid decreases over time due to diminishing budgets.
However, as time progresses, bidders have fewer opportunities remaining, which should in principle
make them less constrained. Therefore, what we observe in the data results from the interplay of
these two effects: the diminishing budget effect and the diminishing remaining opportunities effect.
In Figure 10, we illustrate this by considering a bidder with a median budget (approximately $8000)
and comparing their average bid as fitted to the data with the model-predicted average bid when
their remaining budget is held constant, thereby isolating the effect of having fewer opportunities as
time elapses. We observe that the bidder becomes more aggressive with a constant budget as time
progresses. However, the diminishing budget effect ultimately dominates, leading to a declining bid
path, as indicated by the fitted model.
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Figure 10: The median-budget bidder’s predicted mean bid trajectory compared to the predicted
path when keeping their remaining budget constant.

7 Counterfactuals

Using the estimated structural model, we simulate a counterfactual motivated by an institutional
change that occurred several years ago. Although the current online ad market primarily uses
the first-price auction mechanism, ad exchanges (auctioneers mediating publishers and advertisers)
used the second-price format until around 2018. The shift from the second price to the first price
was spurred by an industry-wise outcry that ad exchanges are charging something other than the
second-price even though claiming to be running the second price auction. Hence, this industry-
wide credibility loss of market makers led participants to demand the first-price auction for its
transparency over what winners pay. Motivated by this shift, we simulate the second-price auction
format using the estimated structural model as a counterfactual scenario to analyze the revenue
and welfare consequences.

Although the theoretical auction literature has established that the first-price auction and the
second-price auction provide the same revenue and welfare for the standard auction environment, it
is ambiguous whether this holds for our environment. Alcobendas and Zeithammer (2023) and Goke
et al. (2022) provide event-based analyses of this transition, and a prominent finding in their research
is that bidding agents required an extended period, often spanning several months, to adapt their
bidding strategies for the first-price auction format. As market conditions can drastically change
in such a time span, it highlights that event-based approaches may be inadequate to provide an
equilibrium analysis of the comparison between the two formats. Our structural framework provides
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a way to compare the long-run equilibrium outcomes from the first-price and second-price auctions.
Using the best-response iteration algorithm described in Appendix A.4, we solve both the

benchmark scenario with the first-price auction (FPA) and the counterfactual scenario with the
second-price auction (SPA) as continuous-action dynamic games with a finite-time horizon. The
best-response formulation for the second-price format is given in Appendix A.3.

Auction Format First Price Second Price
Price Average $2.364 $2.362

Price Variance 1.1246 3.565
Expected Total Revenue $480,427.33 $480,073.49

Expected Total Bidder Surplus $1,191,000 $1,185,000

Table 5: Aggregate statistics of the simulated results under the first-price auction (status quo) and
the second-price auction.

First Price Second Price %(FPA - SPA)
Large Bidders $191,362.15 $197,345.68 -3.03%

Medium Bidders $473,791.65 $467,448.36 1.36%
Small Bidders $297,439.98 $291,925.99 1.89%

Table 6: Total bidder surplus of each type of bidders.

Table 5 shows aggregate statistics of the two auction mechanisms. It shows that the total
revenue and total bidder surplus are slightly better under the first-price format on average. We
find that expected daily (total) revenue and expected total bidder surplus are slightly higher under
the first-price format than the second-price format. They are both about 0.1% higher under the
first-price format.

We find a more substantial difference when we analyze the difference in the welfare distribution
among bidders. First, we classify bidders based on their estimated budgets. Based on the distribu-
tion of budgets in Figure 7, we classify two bidders with budgets ranging from $50,000 to $90,000 as
‘Large,’ eleven bidders with budgets between $10,000 and $50,000 as ‘Medium,’ and twenty bidders
with budgets below $10,000 as ‘Small.’ Table 6 shows the expected total utility obtained by each
type of bidders under the two mechanisms, and it shows that the top two bidders with the largest
budgets are better off under SPA while other bidders with smaller budgets are worse off. The com-
bined welfare of the two large bidders is 3% higher in SPA than in FPA, and the one for the other
bidders is 1% lower in SPA. This suggest FPA has an interesting property in this environment that
compared to SPA, it redistributes welfare from bidders with large budgets to those with smaller
budgets. This suggests that the transition from SPA to FPA in the online display ad market was
a welfare improvement event for smaller players, in addition to the fact that they can enjoy the
transparency of FPA.
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Figure 11: Average price per period

Now we compare the dynamic outcomes of FPA and SPA. Figure 11 shows the average price
per period. Note that the price is the highest bid under FPA and the second-highest bid under
SPA. The average price under FPA, which is the mechanism used in the data, shows a declining
pattern as we see in our descriptive results (Figure 3). As explained before, this is coming from
bidders becoming conservative from decreasing budgets. Although the price path from SPA also
shows a declining pattern, there is some distinctive difference between them. The figure shows that
the average price from FPA is systematically higher than SPA until around 3 PM, and then the
relationship switches. This suggests that FPA generates more revenue until 3 PM, and then SPA
generates more revenue after that.

Figure 12: Average remaining budget per period for Large and Medium bidders
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Analyzing the spending path of players reveals the critical difference that is driving the dynamic
difference. Figure 12 shows the average remaining budget of Large and Medium bidders for each
period. The spending path of Large bidders shows that in the afternoon, their remaining budgets
tend to be lower under FPA. Meanwhile, the spending path of Medium bidders is relatively similar
across the two auction formats. This suggests that the price difference between FPA and SPA after
3 PM is primarily driven by the large bidders having tighter budgets in the afternoon under FPA.

Figure 13: Average surplus per period for Large and Medium bidders

The difference in the spending speed of the large bidders across the two formats has a significant
welfare consequence for smaller bidders. Figures 13 show the time series of average surplus per
auction for Large and Medium bidders. They show that Medium bidders experience a larger surplus
under FPA after around 3 PM, when FPA becomes less competitive than SPA as shown in 11.
Meanwhile, we do not see such a pattern for Large bidders. This dynamic difference suggests that
the contrast in the welfare distribution is driven by smaller bidders enjoying less competition in the
afternoon from the large bidders under FPA.
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Figure 14: Average spending from entered auctions for Large and Medium bidders

Figure 15: Average proportion of auctions entered for Large and Medium bidders

What is driving the large bidders to spend more rapidly under FPA? We analyze the entry and
bidding behavior to understand this. First, in Figure 14, we find that FPA has a higher expected
spending per auction conditional on entering most of the time. This demonstrates that players bid
more aggressively under FPA. However, in Figure 15, we also find that while Large bidders have
similar entry patterns across the two formats, Medium and Small bidders enter auctions at lower
rates under FPA. Since the number of entrants is not public, entry rates affect the probability of
winning an auction. Hence, borrowing the terminology of Li and Zheng (2009), we find that for
Large bidders’ spending, the competition effect coming from all bidders submitting more aggressive
bids under FPA dominates the entry effect from Medium and Small bidders entering less frequently.

Finally, we analyze why bidders submit more aggressive bids when they enter auctions under
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FPA. In the standard auction environment, one key difference between the payment for FPA and
SPA is that the variance is higher for SPA.23 Similarly, Table 5 shows that this is also the case in
our simulation. This difference can be crucial for bidders in our environment since it affects their
ability to control their spending dynamically. In particular, there can be more "accidents" in which
they end up paying more than they expected. Looking back at the bidder’s bidding problem under
FPA in (1) and SPA in (2), we see that the spending enters nonlinearly in the objective function
through the continuation value,

E [EVt+1(wit − Sit) | γ, τ ]

where Sit is the total spending from the current period, given bid strategy γ and entry threshold τ .
Note that EVt(·) exhibits a concave increasing pattern in our estimated structural model because
having a larger budget aids the bidder in securing more future opportunities, albeit at a diminishing
rate. Intuitively, the continuation value makes bidders effectively risk averse; ceteris paribus, they
dislike having a higher variance in their payment because of its concavity in the spending from the
current period. Hence, bidders are more conservative under the second-price auction, resulting from
the willingness to sacrifice some gain with a reduction in the variance.

The finance literature has extensively documented that financial constraints tend to induce risk
aversion in firms (Froot et al., 1993; Opler et al., 1999). In particular, theoretical studies by Milne
and Robertson (1996), Holt (2003), and Rochet and Villeneuve (2005) investigate the dynamic
problem of a financially-constrained firm determining dividends and investment policies, and they
consistently find that the concavity in the value function with respect to the cash holding leads the
firm to exhibit risk aversion, which is in line with the findings in our model.

8 Conclusion

When price discovery is necessary for time-sensitive goods, it is common practice to conduct an
auction for each item sequentially. These dynamic settings may lead to behaviors distinct from
static environments and affect the revenue and welfare outcomes of various auction formats. This
paper investigates how intertemporal budget constraints affect competition in the online advertising
market. Furthermore, we examine how bidders with varying budgets face disparate welfare outcomes
under different auction mechanisms.

We develop a finite-horizon dynamic game between bidders with heterogeneous budgets facing
numerous auctions in each period. We estimate the model using a proprietary dataset of online ad
auctions from Yahoo. Our estimation results show that bidders indeed exhibit behavior consistent
with dynamic budget constraints, and there is a significant disparity in daily budgets among players,
contributing to the heterogeneity observed in participation and bidding behaviors.

To gain insights into the strategic implications of dynamic incentives arising from intertemporal
constraints, we conduct two counterfactual exercises. First, we simulate bidders’ counterfactual

23In fact, the revenue from the second-price auction is a mean-preserving spread of the one from the first-price
auction Krishna (2009).
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entry and bidding behaviors if they were unconstrained. This exercise reveals that, on average,
approximately 30% of the markdown can be attributed to dynamic constraints, which also lead to
a reduction in participation probability by around 25 percentage points.

As our second counterfactual exercise, we compare first-price (the status quo) and second-price
auction outcomes. Although both auction formats yield equivalent revenue and welfare outcomes
in the standard auction environment with symmetric bidders, we discover that dynamics and het-
erogeneous budgets lead to substantial welfare differences between them. Intermediate and smaller
budget bidders fare better in the first-price format due to reduced price variance, which allows for
more aggressive bidding. This heightened competition prompts larger bidders to spend quickly,
leading to diminished competition in later periods and ultimately benefiting smaller bidders overall.
This highlights that even a seemingly simple mechanism choice can have competitive implications
in such a dynamic environment.

The main contribution of this paper is to empirically analyze how budget constraints shape
competition in auctions when held sequentially. Our approach involves introducing a novel struc-
tural framework for analyzing such an environment. The relevance of our findings and framework
extends beyond the online advertising market. Sequential auctions are prevalent in various settings,
encompassing online retail platforms, financial markets, and energy markets, where buyers often
face financial constraints. Traditionally, these scenarios have been examined by treating individual
auctions as isolated static events. However, our work reveals how dynamic constraints can interlink
these sequential auctions, introducing nuanced insights into competition dynamics.
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A Appendix

A.1 Reduced-Form Evidence

Table 7: Regression discontinuity for price. We use the subsample from the two-hour interval
around the budget renewal point.

log(win_bid)

after renewal 0.4257∗∗∗ (0.0786)
(time − renewal) -17.60∗ (10.25)
(time − renewal)2 -5.057 (4.821)
log(#auctions per 5-min interval) -0.0927 (0.0802)
computer -0.2433∗∗∗ (0.0261)
optout -0.0746∗∗∗ (0.0279)
match_cookie_prop 1.305∗∗∗ (0.0169)
gender = Male -0.2327 (0.1421)
gender = Female -0.1599 (0.1441)
age = 25to44 0.1336 (0.1416)
age = 45plus 0.1243 (0.1423)
seg_size 1.94× 10−5∗∗∗ (2.04× 10−6)
num_month_sold -0.0079∗∗∗ (0.0025)
total_rev 0.0001 (0.0002)
avg_rev -0.0089∗∗∗ (0.0017)
profile_length 0.0003∗∗∗ (5.47× 10−5)
after renewal × (time − renewal) -1.361 (14.32)
after renewal × (time − renewal)2 8.965 (7.241)

Site FE Yes
Browser FE Yes
City FE Yes

Observations 30,319
Adjusted R2 0.32271

Signif. Codes: ***: 0.01, **: 0.05, *: 0.1
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Table 8: OLS Bid Regression and Logit Entry Regression

log(bid) entry
Model: OLS Logit

log(#auctions per 5-min interval) -0.0701∗∗∗ (0.0114) -0.1198∗∗∗ (0.0246)
computer -0.0888∗∗∗ (0.0272) -0.3689∗∗∗ (0.1380)
optout 0.0626∗∗ (0.0242) -0.3666 (0.2338)
match_cookie_prop 0.4880∗∗∗ (0.0571) 2.087∗∗∗ (0.4137)
gender = Male -0.0551∗∗∗ (0.0122) -0.0130 (0.0323)
gender = Female -0.0375∗∗∗ (0.0112) 0.0090 (0.0332)
age = 25to44 0.0314∗∗∗ (0.0099) 0.0262 (0.0211)
age = 45plus 0.0120 (0.0091) 0.0209 (0.0198)
seg_size 92.10∗∗∗ (14.58) 642.1∗∗∗ (109.9)
num_month_sold -34.46∗∗ (16.02) -272.8∗ (154.3)
total_rev -26.59∗∗∗ (4.851) -60.62∗∗ (25.81)
avg_rev -35.40∗∗∗ (4.336) -317.7∗∗∗ (47.69)
profile_length 74.67∗∗∗ (17.68) 586.1∗∗∗ (210.4)

Site FE Yes Yes
Browser FE Yes Yes
City FE Yes Yes
Day-Hour FE Yes Yes
DSP FE Yes Yes
Advertiser FE Yes No

Observations 8,856,603 45,484,100
Adjusted/Pseudo R2 0.44974 0.34448

Double-clustered (DSP & 5-min interval) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1
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A.2 First-step estimates

r̂t p̂t

t = 1 617.9 (440.6) 0.159 (0.095)
t = 2 2225.1 (2350.6) 0.498 (0.264)
t = 3 11055.2 (18673.2) 0.875 (0.185)
t = 4 1038.7 (910.5) 0.472 (0.218)
t = 5 238551.6 (288525.0) 0.995 (0.006)
t = 6 3933.6 (4070.4) 0.701 (0.217)
t = 7 822.3 (563.5) 0.202 (0.110)
t = 8 1079.0 (681.5) 0.151 (0.081)
t = 9 458.7 (298.2) 0.044 (0.027)
t = 10 421.5 (274.4) 0.028 (0.018)
t = 11 322.0 (197.4) 0.020 (0.012)
t = 12 1475.1 (1662.2) 0.080 (0.083)
t = 13 360.4 (227.6) 0.022 (0.013)
t = 14 232.0 (142.1) 0.015 (0.009)
t = 15 195.5 (125.0) 0.013 (0.008)
t = 16 199.2 (127.3) 0.013 (0.008)
t = 17 125.0 (78.1) 0.009 (0.006)
t = 18 154.5 (99.0) 0.014 (0.009)
t = 19 203.6 (131.6) 0.022 (0.014)
t = 20 108.1 (67.7) 0.013 (0.008)
t = 21 83.3 (52.9) 0.011 (0.007)
t = 22 109.6 (70.2) 0.016 (0.010)
t = 23 109.6 (70.5) 0.019 (0.012)
t = 24 232.6 (155.2) 0.053 (0.034)

Table 9: Estimated parameters for F
(t)
K = NegativeBinomial(rt, pt), the distribution of the number

of auctions for each period t.

A.3 Bidders’ objectives under the second-price auction

Let Ψ̃t(· | K) be the belief on rivals’ highest bid P conditional on the current number of auc-
tion K under the SPA format. This belief represents the probability of winning an auction and
also the distribution of the price in each auction. Given the ex-ante value function ẼV t+1(w) =

E[Ṽt+1(Kt+1, w)] with ẼV T+1(w) = ηQ(w), the Bellman formulation of the objective is

max
γ,τ

KtFC(τ)

[
E

[∫ bγ(X)

0
(X − p)dΨ̃t(p | Kt)

]
− E[C | C ≤ τ ]

]
+ E

[
ẼV t+1(wit+1) | γ, τ

]
(2)

Now, we provide the first-order necessary conditions for the bidding problem under the second-price
format while assuming differentiablity. The one with respect to the bid function parameter γ is
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given by

E
[
Ψ′

t(b
γ(X) | Kt)(X − bγ(X))︸ ︷︷ ︸

Static FOC

∇γb
γ(X)

]
+

1

KtFC(τ)
∇γE

[
ẼV t+1(wit+1) | γ, τ

]
︸ ︷︷ ︸

Dynamic Tradeoff

= 0

Meanwhile, the first-order condition with respect to the entry threshold τ is

τ = E

[∫ bγ(X)

0
(X − p)dΨ̃t(p | Kt)

]
︸ ︷︷ ︸

Static Threshold

+
1

KfC(t)

∂

∂τ
E
[
ẼV t+1(wit+1) | γ, τ

]
︸ ︷︷ ︸

Dynamic Tradeoff

Again, similarly to the first-order conditions under the first-price format for (1), we have both static
and dynamic components in the optimality conditions here. For instance, in the condition for the
optimal bid strategy, the static component encourages truthful bidding, but the dynamic component
provides a counteracting force.

A.4 Algorithm for solving for an equilibrium

We setup the algorithm by first making a grid over the state space for (Kt, wit). For the remain-
ing budget, we make a grid over [−M,M ] where M is the upper bound of the initial budgets.
For the number of auctions, we take Monte Carlo draws from F̂

(t)
K for each period t. We set

{(γ(0)t (K,w), τ
(0)
t (K,w)}Tt=1 as the initial strategies.

Then, we execute the following loop: For each m = 1, . . .,

• Forward simulate numerous paths of {(Kt, w1t, . . . , wNt)}Tt=1 using

{(γ(m−1)
t (K,w), τ

(m−1)
t (K,w)}Tt=1 to numerically obtain the belief:

Ψ
(m)
t (b | K) = E

∏
j ̸=i

(
1− FC(τ

(m−1)
t (K,wjt)) + FC(τ

(m−1)
t (K,wjt))FX(b−1(b | γ(m−1)

t (K,wjt)))
)

over the grid of Kt for each t.

• Obtain {(γ(m)
t (K,w), τ

(m)
t (K,w)}Tt=1 over the grid of states that best respond given Ψ

(m)
t (b |

K) by solving (1) via backward induction.

• Break if ∥{(γ(m)
t (K,w), τ

(m)
t (K,w)}Tt=1 − {(γ(m−1)

t (K,w), τ
(m−1)
t (K,w)}Tt=1∥ is below some

tolerance.
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