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Abstract

Online privacy protection has gained momentum in recent years and spurred
both government regulations and private-sector initiatives. A centerpiece of this
movement is the removal of third-party cookies, which are widely employed to
track online user behavior and implement targeted ads, from web browsers.
Using banner ad auction data from Yahoo, we study the effect of a third-party
cookie ban on the online advertising market. We first document stylized facts
about the value of third-party cookies to advertisers. Adopting a structural
approach to recover advertisers’ valuations from their bids in these auctions, we
simulate a few counterfactual scenarios to quantify the impact of Google’s plan
to phase out third-party cookies from Chrome, its market-leading browser. Our
counterfactual analysis suggests that an outright ban would reduce publisher
revenue by 54% and advertiser surplus by 40%. The introduction of alternative
tracking technologies under Google’s Privacy Sandbox initiative would recoup
part of the loss. In either case, we find that big tech firms can leverage their
informational advantage over their competitors and gain a larger surplus from
the ban.
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comments.

1



1 Introduction

Privacy protection is a key topic in the current policy discussions in the digital land-

scape. Much of the debate surrounds the use of third-party cookies, a device long

employed by internet companies to track user behavior across the web, collect user

information, and target them with highly personalized ads. However, heightened

concerns surrounding digital privacy have spurred policy debates and initiatives to

curb the pervasive use of third-party cookies. A wave of data privacy legislation has

been introduced or proposed in the European Union and across the United States to

limit the use of third-party cookies.1 In the private sector, Apple’s Safari and Mozilla

Firefox, two popular web browsers in the market, have disabled third-party cookies

by default. Google has planned to follow suit and phase out third-party cookies in

Chrome, currently the market-leading web browser. Dubbed “Cookiepocalypse” in

the industry, the plan met widespread outcry and pushback and has been postponed

several times because it strikes at the foundation of the online advertising market.

Moreover, removing third-party cookies–a decentralized protocol–could lead to in-

dustry concentration in the online ad supply chain, triggering antitrust sirens from

legislators and government agencies.2

In this paper, we investigate the welfare consequences of Google’s plan to remove

third-party cookies and introduce alternative tracking technologies under its “Privacy

Sandbox” initiative.3 Our key contribution is to quantify the unequal distributional

effects on the demand side of the online advertising market, which encompasses ad-

vertisers and their intermediaries who purchase advertising opportunities and match

them with advertisers. Although potentially beneficial to consumer privacy, the pro-

posed plans could have negative spillovers in terms of information monopoly and

anti-competitive practices of large companies. Removing third-party cookies will un-

1See the General Data Protection Regulation (GDPR) of the European Union, the California
Consumer Privacy Act of 2018 (CCPA), the Colorado Privacy Act (CPA), and the Virginia Consumer
Data Protection Act (VCDPA).

2The EU has launched an antitrust probe into Google’s plan to ban third-party cookies in Chrome.
In the United States, federal lawmakers have also voiced antitrust concerns over the plan in a 2020
report by the US House Subcommittee on Antitrust.

3For the purpose of evaluating the distributive effects of Chrome’s blocking third-party cookies
on various parties in the online advertising market and whether its advertising network constitutes
a monopoly, this article focuses on the publishers and advertisers who are direct participants in the
market. The welfare impact of the user side is nuanced and involves consideration of their preference
for privacy, a topic subject to much debate. See Barth and de Jong (2017) for a discussion of the
privacy paradox.

2



dermine firms’ ability to target consumers and reduce the surplus of advertisers and

their intermediaries. Notably, certain intermediaries, such as major tech companies

like Google, can directly obtain users’ behavioral information from its widely pop-

ular online products (the Google search engine, Gmail, YouTube, etc.), while other

smaller intermediaries have no such recourse. Although the proposed new technology

might partially offset the loss, we demonstrate that this is insufficient to diminish the

information advantage enjoyed by large players.

To this end, we analyze a large sample of detailed bid-level data of online banner

ad auctions from Yahoo, a prominent online news and media publisher. Online ads

are sold via auctions: online publishers offer ad spaces when users access their web-

sites, and advertisers bid to determine whose ad is shown. To streamline the process,

advertisers use demand-side platforms (DSPs) to participate in auctions and bid on

their behalf. Third-party cookies enter the process by allowing DSPs to retrieve in-

formation associated with the user and more accurately evaluate the ad opportunity.

Our first set of empirical results confirms the value of third-party cookies to adver-

tisers. We find that bidders are more likely to submit a bid and bid a higher amount

in auctions with third-party cookies. Comparing DSPs’ bidding decisions for users

with third-party cookies to those without, we find that third-party cookies increase

DSPs’ bids by around 30% on average. The highest bid, which translates into the

publisher’s revenue, increases by as much as 80% on average.

Our primary interest is the revenue and welfare effects after Google blocks third-

party cookies on Chrome and introduces alternative tracking technologies on the

browser. Because the plan is yet to transpire and the bidders’ underlying valuations

are not observed, we adopt a structural approach to recover valuations and compute

the counterfactual revenue and welfare for players in the market. Our empirical model

is a first-price auction model with asymmetric bidders. We enrich the model with

two essential features of the advertising market: bidder heterogeneity and auction

heterogeneity. We characterize the equilibrium as a system of differential equations

and adopt a numerical approach to approximate the bidding functions. The recovered

valuation distributions and bidding strategies are consistent with the intuition that

bidders value impressions with cookies more and bid for those more aggressively.

We then simulate the effect of “Cookiepocalypse,” a third-party cookie ban on

Chrome without any alternative means to track users. We consider two counterfactual

specifications: a baseline symmetric ban in which all bidders are affected by the cookie
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ban and no longer receive cookie information, and an asymmetric ban in which one

privileged bidder continues to observe cookie information for Chrome users. The

second scenario emulates the information advantage enjoyed by a “Big Tech” player

in the market. In the absence of third-party cookies, large firms like Google still

have first-party access to user information inaccessible to other online advertising

businesses. For each simulation, we solve the auction model under the counterfactual

valuation distributions without third-party cookies.

We find a large negative effect worthy of the name Cookiepocalypse: in the baseline

symmetric specification, such a ban would reduce the publisher’s revenue by 54% and

advertiser surplus by 40%. The asymmetric specification illustrates the egregiously

unequal welfare distribution and anti-competitive impact of the cookie ban. The

privileged bidder with exclusive access to Chrome users’ data wins auctions twice as

often and earns even more surplus compared to the no-ban status quo. Our results

confirm and justify the antitrust concerns raised by Google’s plan.

Our second counterfactual builds upon the first and introduces an alternative track-

ing technology that provides limited behavioral information on Chrome users. Google

is developing a set of tools under the “Privacy Sandbox” initiative to replace third-

party cookies. The spirit of its proposed technologies is to generate groups of users

with similar interests, giving advertisers a way of targeting them without exposing

details on individual users. We find that such a more privacy-friendly tracking tech-

nology would indeed soften the impact of “Cookiepocalypse” in terms of both welfare

and concentration.4 The revenue loss decreases to 13% from 54% in the first counter-

factual and that advertiser surplus falls from 40% to 8%. Furthermore, although the

informationally advantageous bidder still gains more surplus compared to the status

quo, other bidders’ performance is only mildly impacted. Our results demonstrate

the importance and benefits of providing advertisers with an alternative means to

target users in order to mitigate the revenue and competitive impacts of the ban.

4There are additional antitrust implications over Google’s becoming the dominant data
vendor for its Privacy Sandbox product. For instance, these concerns led to antitrust
investigations by the UK and EU regulatory authorities (https://www.wsj.com/articles/
google-chrome-privacy-plan-faces-u-k-competition-probe-11610119589). These implica-
tions, while interesting, are outside the scope of the present paper.
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1.1 Related literature

Our paper contributes to several existing strands of literature. First, our article con-

tributes to the literature on targeting in advertising.5 Many empirical studies find

positive effects of targeting for advertisers and publishers (Rutz and Bucklin (2012),

Lewis and Reiley (2014), Ghose and Todri-Adamopoulos (2016)). Our first set of em-

pirical results is consistent with this strand of literature. Levin and Milgrom (2010),

on the other hand, discuss trade-offs in narrower versus broader (or ”conflated”) tar-

geting and argue that the former thins out markets and reduces competition and

prices. Rafieian and Yoganarasimhan (2021) empirically confirm this prediction and

show that the optimal level of targeting is not necessarily the finest level. Our results

suggest that third-party cookies do not suffer from the problem of market-thinning.

Methodologically, our empirical approach connects with the structural empirical

literature on auctions.6 We model ad auctions via a first-price auction model with

a binding reserve price, and we incorporate observed heterogeneity as well as unob-

served heterogeneity (Krasnokutskaya, 2011; Hu, McAdams, and Shum, 2013; Haile

and Kitamura, 2019). In addition, similarly to Athey, Levin, and Seira (2011), Kras-

nokutskaya and Seim (2011), and Kong (2020), we allow the valuation distributions

to differ across bidders to capture the observed difference in their bidding behav-

iors.7 To overcome the complexities introduced by auction and bidder heterogeneity,

for both estimation and counterfactual analysis, we employ Mathematical Programs

with Equilibrium Constraints (MPEC) developed by Hubbard and Paarsch (2009);

Hubbard, Kirkegaard, and Paarsch (2013); Hubbard and Paarsch (2014) to obtain

equilibrium bidding strategies numerically.

Our work also contributes to the growing literature on the economics of privacy

and data protection policies.8 Several papers study the effect of restricting third-

5See Goldfarb (2014) and section 6 of Goldfarb and Tucker (2019) for reviews of this literature
on targeting in online advertising.

6There are a number of surveys of this literature, including Hong and Paarsch (2006), Athey and
Haile (2007), and Perrigne and Vuong (2019).

7While our study takes the existing auction format (first-price) as given, in the particular context
of online ad auctions, there is a strand of theoretical literature studying auction design (Celis, Lewis,
Mobius, and Nazerzadeh (2014), Abraham, Athey, Babaioff, and Grubb (2020)).

8See Acquisti, Taylor, and Wagman (2016) and Brown (2016) for reviews of the economics of
privacy and Goldfarb and Que (2023) for a review of the economics of digital privacy. Several
authors (Goldberg, Johnson, and Shriver, 2019; Aridor, Che, and Salz, 2020) study the impact of
the European Union’s General Data Protection Regulation (GDPR) on web traffic and ad revenue.
See Johnson (2022) for a survey of studies on the economic consequences of GDPR.
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party cookies in online advertising and find a loss ranging from 4 percent to 66

percent (Beales and Eisenach, 2014; Marotta, Abhishek, and Acquisti, 2019; Johnson,

Shriver, and Du, 2020). The industry estimate is closer to the upper end, where a

study by Google finds that disabling third-party cookies results in an average loss of

52% (Ravichandran and Korula, 2019). While most of these papers are retrospective

studies using historical data, our paper provides a counterfactual scenario of the

much-discussed Chrome cookie ban which, while planned, has yet to take place.

Finally, this article also connects with the emerging literature on the anti-competitive

practices of big tech firms, particularly through the channel of data collection and

privacy policy. Consent requirements may favor large firms (Campbell, Goldfarb, and

Tucker (2015), Goldberg, Johnson, and Shriver (2019), Kesler, Kummer, and Schulte

(2019)). Johnson, Shriver, and Goldberg (2022) and Peukert, Bechtold, Batikas, and

Kretschmer (2022) show that the GDPR has led to a greater market concentration

in the media tech industry, with Google emerging as a clear winner from the policy.

Our article is the first to structurally evaluate the impact of Chrome’s plan to remove

third-party cookies from an antitrust point of view, connecting privacy policy with

competition and demonstrating the skewed distribution of profits due to information

monopoly.

2 Market background

2.1 Online ad auctions

Our analysis focuses on real-time auctions of banner ad space shown to users when

they browse web pages. Banner ads are displayed in rectangular boxes between or

on the side of the main text. In industry parlance, the ad space for sale is called

an impression–each time an ad is displayed on the user’s screen, it is counted as one

impression. The seller is the publisher whose web page is browsed by the user and

who has an ad space for offer (Yahoo, in our case). The bidders are advertisers who

compete for the ad space to impress the user. The auctions are mediated through an

ad exchange, the “auction house” for ad spaces. Auctions at the Yahoo ad exchange,

which are the focus of this paper, are in the first-price sealed-bid format.

The process of online ad auctions can involve many parties interacting automati-
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cally in real time. The auction is triggered when the user opens the web page through

her browser. The publisher packages the offer of an ad space along with information

about the user and sends it to the ad exchange.9 The ad exchange then sends out a

bid request to potential bidders (DSPs), inviting them to submit a bid. Given the

large volume of auctions and the complexity of online bidding, advertisers do not

participate directly in these auctions, but rather via demand-side platforms (DSPs),

which bid on behalf of their advertiser clients.10 Using information about the user

ready to view the ad, the DSP selects the most suitable advertiser for that impres-

sion and calculates the optimal bid for the ad space, considering competition from

other DSPs. In any auction, DSPs typically submit only one bid on behalf of one

of their advertiser clients.11 In what follows, we use the terms advertisers and DSPs

interchangeably and abstract away from the distinction between the DSPs and their

advertiser clients.

DSPs are heterogeneous based on their purpose, specialty, and scope, and in this

paper, we highlight that such heterogeneity is reflected in their bidding behavior.

DSPs fall into three categories: general-purpose DSPs, rebroadcasters, and special-

ized DSPs. General-purpose DSPs provide a wide range of targeting options and

optimization tools to help advertisers reach their target audience. They are typically

used by large and medium-sized advertisers with sizable budgets and broad campaign

objectives. Rebroadcasters, as the name implies, rebroadcast advertising opportunities

to their own ad exchanges and consolidate bids from multiple DSPs participating in

them, acting as intermediaries that increase market thickness. Rebroadcasters often

provide additional services to help other DSPs target users. Specialized DSPs focus

on reaching potential customers who have indicated specialized interests or previously

interacted with a brand or website. They are particularly valuable for e-commerce

advertisers looking to re-engage potential customers as well as subscription-based

services to retain existing subscribers.

9The offer is usually made through a supply-side platform server that acts on behalf of the
publisher. This step is not relevant to our purpose. A data management platform could also be
involved to retrieve stored information of the user that may be of interest to the advertisers. The
supply-side platform packages the ad space offer with all relevant information and sends it to the ad
exchange.

10Many major internet companies, e.g., Amazon, Facebook, and Google, own DSP services. These
DSPs bid for ad spaces on their own companies’ and other publishers’ websites. Yahoo also maintains
its own DSP.

11Decarolis, Goldmanis, and Penta (2020) and Decarolis and Rovigatti (2021) study the potential
anti-competitive effects of the delegation between the advertisers and the DSPs.
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Anticipating our empirical implementation, we further categorize general-purpose

DSPs and specialized DSPs by their size as either large or small. The size of the DSP

captures the budget, experience, and sophistication of the DSPs. These aspects are

relevant to their valuation distributions of impressions as well as bidding strategies,

which are crucial in our empirical exercise below.

2.2 Cookies and behavioral targeting

To make their ads more effective, advertisers use cookies to track user activities

and implement behavioral targeting. Cookies are small files of data created by a web

server and stored on the user’s device when a user browses a website. Cookies contain

user-associated IDs that point to entries stored in databases containing information

about the user. For example, if a user visits a news website for the first time and

selects English as her preferred language, the website stores this information in its

server and saves a cookie file on the user’s device. The next time the user visits

the website, it will read the local cookie file, identify the user with the information

on the database, and automatically select English as the preferred language. This

type of cookie is accessible only by this specific news website and is known as a first-

party cookie because it is hosted and used exclusively by the website. First-party

cookies are generally not controversial because they improve user experience using

stored information such as login credentials, settings and preferences, and items in

the shopping cart.

Third-party cookies, on the contrary, are the subjects of intense scrutiny because

of their role in user activity tracking and behavioral targeting. As the name suggests,

they are cookies created by third-party entities linking to their respective databases.

To continue the example above, in addition to its own content, the news website also

contains bits of websites embedded by third-party servers, such as banner ads or share

buttons linking to social media. These servers could also store cookies of their own to

identify the user and track her activity on the news website. A distinguishing feature

of third-party cookies is that they can be used to track the user’s activities across

a range of websites. If the user visits a retail website that hosts the same cookie

and browses, say, headphones, the third-party server would store this information

and match it with the same user who visited the news website earlier. This allows

cross-website ad targeting as it enables an ad for the headphones she browsed on the
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retail website to be shown to this user during her next visit to the news website.

Third-party cookies, therefore, play a critical role in behavioral targeting in online

advertising and as such, are often considered an infringement on consumer privacy.

2.3 Privacy protection

Given the controversial nature of third-party cookies and the growing concern over

privacy breaches, many internet entities have either eliminated or curtailed third-

party cookies in recent years. Web browsers have been at the forefront of this move.

Safari and Firefox (which we refer to as the blocked browsers) have already blocked

third-party cookies for their users and effectively shut down behavioral targeting

by blocking the execution of scripts embedded by third-party servers. Third-party

cookies are mostly unavailable for users of blocked browsers. On the other hand, as

of 2022, Chrome, together with a few other browsers including Microsoft Edge (the

allowed browsers), still enables third-party cookies by default. Third-party cookies are

generally available on these browsers but could still be absent for a host of reasons.12

In addition to private-sector initiatives, the CCPA and other similar privacy reg-

ulations require large websites like Yahoo to implement a “Do Not Sell My Personal

Information” link that enables users to opt out of the sale of their personal infor-

mation. Under such an opt-out arrangement, publishers are not allowed to monetize

the user’s personal information (cookie, IP address, or precise geo-location data) by

sharing it with third parties.13 When cookies are no longer employed, DSPs have sig-

nificantly less information about users and cannot engage in accurate behavioral ad

targeting. In our empirical analysis below, we will exploit the variation in third-party

cookie availability to evaluate the effect of behavioral ad targeting.

12For example, third-party cookies could be unavailable if the user chooses to block third-party
cookies in their browser settings, or browses in private (incognito) mode, or has recently cleared
cookies in her browser.

13Internet companies can still use broad geographical location (e.g., city) and contextual informa-
tion of ad opportunities coming from these users for targeted ads at a broader stroke.
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Figure 1: Geographical distribution of impressions

Note: Each dot represents the number of impressions originating within the 10 by 10 km2 area
around the dot during the week.

3 Data and Descriptive Statistics

We employ bidding data from banner ad auctions on sixteen websites of Yahoo,

including Homepage, News, Finance, etc. We focus on a specific display ad format

known as medium rectangular (MREC) units, which has the dimension 300×250 and

is displayed to the right of the main content. This is one of the most popular ad

formats, and the fixed size and position help us eliminate potential heterogeneity

arising from these aspects. We consider a sample of user impressions from the United

States during one week in May 2022. Figure 1 shows the geographical distribution

of our sample, which roughly coincides with the population density of the US. The

dataset consists of over 5.5 million bids from about 740,000 auctions.

Table 1 presents summary statistics of key variables in the dataset. The variable

bid is the submitted bid price of an individual DSP. For reasons of confidentiality, we
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Table 1: Summary statistics

Variable No. observations Pct. missing Mean Std. Dev. Min Median Max

Auction:
Bid 5,529,489 0.000 1.000 1.692 0.064 0.589 275.760
No. bidders 736,745 0.000 7.505 4.745 1.000 7.000 26.000
Winning (highest) bid 736,745 0.000 2.052 3.206 0.064 1.211 275.760

Cookie availability:
Pct. cookie matched 736,745 0.000 0.577 0.404 0.000 0.800 1.000
Cookie matched 736,745 0.000 0.689 0.463 0.000 1.000 1.000

Privacy:
Opt-out 736,745 0.000 0.089 0.284 0.000 0.000 1.000
Blocked 736,745 0.000 0.215 0.400 0.000 0.000 1.000

Device:
Computer 736,745 0.000 0.968 0.177 0.000 1.000 1.000

Demographics:
Female 736,745 0.000 0.125 0.331 0.000 0.000 1.000
Male 736,745 0.000 0.146 0.353 0.000 0.000 1.000
Gender unknown 736,745 0.000 0.729 0.444 0.000 1.000 1.000
Age 24 and below 736,745 0.000 0.001 0.031 0.000 0.000 1.000
Age 25 to 44 736,745 0.000 0.053 0.225 0.000 0.000 1.000
Age 45 to 64 736,745 0.000 0.120 0.325 0.000 0.000 1.000
Age 65 and above 736,745 0.000 0.064 0.245 0.000 0.000 1.000
Age unknown 736,745 0.000 0.761 0.426 0.000 1.000 1.000

Proxies for user information:
Interest segments (10,000s) 736,745 0.581 2.558 1.100 0.000 2.551 8.741
Months monetized 736,745 0.580 29.118 24.225 0.000 32.000 55.000
Total revenue (normalized) 736,745 0.580 0.000 1.000 -0.685 -0.370 94.183
Average revenue (normalized) 736,745 0.580 0.003 0.063 -26.035 0.000 1.712
Days in database (10,000s) 736,745 0.725 1.742 0.510 0.000 1.912 1.912

normalize the submitted bids to have a sample mean equal to 1. For every auction, we

observe the number of bidders (out of a total of 33 DSPs) who entered the auction and

submitted a bid, as well as the winning (highest) bid. There is substantial variation

in the number of actual bidders for each auction, with a mean of 7.5 bidders and a

standard deviation of 4.7. Our empirical model will factor in this important behavioral

pattern and account for bidders’ entry decisions.

Two key variables describe the availability of third-party cookies for each impres-

sion. The variable percentage of cookie matched is the percentage of DSPs in each

auction who matched the user with a profile in the bidders’ database constructed

with third-party cookies. Small percentages of cookie matched indicate that less in-

formation is available for the user.14 The variable cookie matched is a binary variable

indicating whether the percentage of cookie matched is nonzero for the impression.

14Cookie-match information is unavailable for two of the DSPs in our sample; for that reason, we
do not model cookie availability at the user-DSP level but rather construct the aggregate measure
at the user level.
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In other words, it indicates whether at least one bidder has a cookie identifier for the

user. For ease of interpretation, our empirical analysis will primarily focus on this

variable. In what follows, we refer to impressions with cookie matched = 1 as “cookie

impressions” and those with cookie matched = 0 as “cookieless impressions.”

The variable opt-out is a binary variable indicating if the user opts out of behavioral

targeting. The variable blocked is a binary variable indicating if a browser blocks

third-party cookies by default i.e. it is equal to 1 for Safari or Firefox and 0 for other

browsers. About 9% of auctions are for opt-out impressions, while 20% of auctions

involve impressions using browsers that block third-party cookies.

We include additional characteristic variables indicating the amount of information

available on the user. Yahoo’s database of user profiles (including those without

Yahoo accounts) contains its best guess (based on machine learning procedures) of

the user’s characteristics and proxies well for the user-specific information that can

be inferred from third-party cookies. These include gender and age categories. The

variable interest segments (in 10,000s) tallies the total number of interest segments

that the user belongs to, where each segment is a prediction of the user’s likely interest

in a particular subject (e.g., automobile, basketball, gardening, etc.) The variable

months monetized is the number of months that the user has been monetized by

Yahoo, and the total revenue and average revenue are the total and average monthly

revenue derived from the user, respectively, where total revenue is normalized with

mean 0 and standard deviation 1. Finally, the variable days in database (in 10,000s)

is the number of days for which the user profile has existed in Yahoo’s database. A

smaller number of days may imply that less information is available for the user.15

15We note two caveats of these user-specific variables. First, while these variables quantify the user
information observed by Yahoo’s DSP, in our empirical analysis, we use these variables to proxy for
what any DSP knows about these users, i.e., we assume all the DSPs observe the same information as
Yahoo. Without data from other DSPs, it is impossible to validate this assumption; however, since
many of the users in our dataset have registered Yahoo accounts, we believe that the information
that Yahoo has on these users represents a “best case” (upper-bound) on the information that any
DSP might have on these users.

Second, we observe a large incidence of missing data: about 70% of the users have unknown age and
gender information. As age and gender are typically inferred indirectly from users’ internet activities
using machine learning algorithms, missing values for these variables typically imply that not enough
tracking information is known about these users to permit reliable inference. Furthermore, the
variables interest segments, months monetized, and revenue are unknown for around 60% of the
analyzed users. The lack of such information is often due to users opting out or using browsers
that block third-party cookies. To address this problem and as a robustness check, we have also
implemented our empirical analysis on the subsample of users with a Yahoo account, for which the
overall incidence of missing data is lower, and confirmed the robustness of our results.
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Table 2: Summary statistics of impression characteristics by browser

Chrome Edge Safari Firefox Other

Proportion 0.576 0.199 0.109 0.106 0.009
Cookie matched 0.869 0.847 0.000 0.000 0.842
Opt-out 0.088 0.097 0.056 0.121 0.033
Female 0.137 0.139 0.000 0.000 0.049
Male 0.154 0.170 0.000 0.000 0.065
Gender unknown 0.709 0.691 1.000 1.000 0.886
Age 24 and below 0.001 0.001 0.000 0.000 0.000
Age 25 - 44 0.074 0.050 0.000 0.000 0.015
Age 45 - 65 0.153 0.150 0.000 0.000 0.055
Age 65 and above 0.068 0.117 0.000 0.000 0.048
Age unknown 0.703 0.681 1.000 1.000 0.881

In addition to the user-specific characteristics, we observe variables associated with

the origination of the impression. These include the time (hour) and the city of the

impression, the website (a total of 16 including Yahoo Homepage, News, Finance,

etc.) that published the impression, the device (computer) which indicates the user

browsed with either a computer or a smartphone/tablet, and the browser (Safari,

Firefox, Edge, Chrome, and others) with which the user accessed the web page.

Because our analysis focuses on the impact of Google’s plan to terminate third-

party cookies on Chrome, in Table 2, we show the mean statistic of key impression

characteristics, broken down by browser. Importantly, Chrome accounts for almost

60% of the impressions in our data and dominates the browser industry, suggest-

ing a substantial impact of Google’s plan on the market. Impressions from Safari

and Firefox, the two browsers that ban third-party cookies by default, account for

roughly 20% of impressions. Accordingly, impressions from Safari and Firefox are

missing third-party cookie information, i.e., cookie matched = 0, and gender and age

information is unavailable for these impressions as well.

3.1 Bidding patterns

Table 3 presents a comparison of summary auction statistics for impressions with and

without cookies. For either category, we calculate the averages and standard devi-

ations (in parentheses) of the bid, the winning bid, the number of bidders, and the
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Table 3: Comparison between auctions with and without third-party cookies

Variable Cookie impressions Cookieless impressions

Bid 1.041 0.764
(1.715) (1.566)

Winning bid 2.454 1.166
(3.487) (2.278)

No. bidders 9.283 3.558
(4.315) (2.933)

Entry probability 0.265 0.102
(0.441) (0.302)

Notes: The mean values are reported in both columns and standard deviations are in parentheses
below. The bid is averaged at the bid level. The winning bid and the number of bidders are averaged
at the auction level. Entry probability is calculated by first constructing a binary variable Entry for
every auction-bidder pair. It is equal to 1 if the bidder submitted a bid in the auction.

entry probability. Impressions with third-party cookie identifiers fare better for all

variables of interest. In particular, submitted bids on average are about 25% higher

(1.0 versus 0.76) for cookie impressions, and winning bids for cookie impressions are

over two times higher (2.5 versus 1.2) than cookieless impressions. The difference

arises from both higher submitted bids and a larger number of participating bid-

ders, with bidders more than twice as likely to enter auctions for cookie impressions.

Finally, the standard deviation of bids and winning bids are higher for cookie im-

pressions. This is expected because DSPs have the most information on these users,

which increases the targeting opportunities and hence, the variation in advertisers’

bids.

Figure 2a shows the empirical CDFs of submitted bids in the dataset for five

categories of DSPs in the dataset by their type and size (as discussed in Section 2.1):

5 large general-purpose, 10 small general-purpose, 9 rebroadcaster, 3 large specialized,

and 6 small specialized DSPs. Consistent with the results in Table 3, DSPs tend to bid

higher for cookie impressions. In fact, the distribution of bids for cookie impressions

first-order stochastically dominates that for cookieless impressions. Figure 2a also

shows heterogeneity in submitted bid distributions among different groups of DSPs.

The differences are driven by a few factors: Large DSPs generally have better access

to user information, have more budget and experience, and are more sophisticated

in matching advertisers with impressions. Specialized DSPs could focus on some
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areas of advertising, such as retailing or reconnecting with existing customers (e.g.

retargeting). In terms of auction participation, Figure 2b displays the frequencies

with which the five groups of DSPs participate in auctions for impressions with and

without third-party cookies, and it also highlights heterogeneity in entry behavior

across DSPs. The observed heterogeneity among the bidding DSPs motivates us to

adopt an auction model with asymmetric bidders in the structural estimation exercise

discussed below.

3.2 Evidence of the value of third-party cookies

Next, we present reduced-form evidence of the value of third-party cookies to adver-

tisers. Specifically, we run regressions of the following form:

yi = βcCookiei + x′iβ + αi + εi (1)

where i indexes a bidder or an auction depending on the model, yi is the outcome

variable to be specified later, Cookiei indicates if third-party cookies are available for

the impression, xi is a vector of covariates that include gender and age information

as well as proxies for the amount of information available on the user, αi includes

fixed effects of the hour in the day, the city, the website, and the browser. For

models at the bidder level, we also include a DSP fixed effect to capture bidder

heterogeneity. Standard errors are clustered by the hour, the city, and the website to

account for potential correlations. The variable of interest is Cookiei, where a positive

and significant estimate of βc would indicate the value of third-party cookies to the

advertisers.

We first analyze the effect of cookie availability on submitted bids by taking the

outcome variable yi = log(Bidi) for every bid i in equation 1. Table 4 columns (1)-

(3) report the results of three alternative specifications. Column (1) includes only

cookie availability and fixed effects; column (2) adds additional covariates; column

(3) further adds a DSP fixed effect to account for bidder heterogeneity. We find

quantitatively similar results in these models: having third-party cookies increases

submitted bids by around 30%.

Next, we take the outcome variable yi = log(Winning bidi) for each auction i

in equation 1 to examine the effect of cookie availability on the highest bid, which
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Figure 2: Cookie vs. cookieless: observed bidders’ behavior by DSP group

(a) Empirical CDFs of submitted bids (log scale)

(b) Average entry frequencies
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Table 4: Regression results for submitted bids and winning bids

Dependent Variables: log(Bid) log(Winning bid)
(1) (2) (3) (4) (5)

Cookie 0.335∗∗∗ 0.318∗∗∗ 0.314∗∗∗ 0.887∗∗∗ 0.783∗∗∗

(0.028) (0.046) (0.031) (0.018) (0.042)
Opt-out 0.013 -0.004 -0.021

(0.026) (0.020) (0.024)
Computer -0.231∗∗∗ -0.177∗∗∗ -0.397∗∗∗

(0.028) (0.030) (0.055)
Gender female 0.097∗∗∗ 0.095∗∗∗ 0.260∗∗∗

(0.012) (0.009) (0.018)
Gender male 0.069∗∗∗ 0.064∗∗∗ 0.221∗∗∗

(0.010) (0.007) (0.014)
Age 24 and below 0.066∗∗∗ 0.050∗∗∗ -0.054

(0.008) (0.009) (0.033)
Age 25 to 44 0.015∗ 0.009 -0.100∗∗∗

(0.008) (0.007) (0.016)
Age 45 to 64 -0.010 -0.015∗∗ -0.141∗∗∗

(0.006) (0.006) (0.019)
Age 65 and above -0.022∗∗ -0.031∗∗∗ -0.178∗∗∗

(0.009) (0.008) (0.016)
Interest segments -0.002 0.002 0.044∗∗∗

(0.001) (0.001) (0.005)
Months monetized 0.003∗∗∗ 0.002∗∗∗ 0.003∗∗∗

(0.000) (0.000) (0.000)
Total revenue (normalized) -0.037∗∗∗ -0.027∗∗∗ -0.043∗∗∗

(0.002) (0.002) (0.003)
Days in database -0.051∗∗∗ -0.044∗∗∗ -0.053∗∗∗

(0.004) (0.004) (0.005)

Fixed-effects
Time (hour) Yes Yes Yes Yes Yes
City Yes Yes Yes Yes Yes
Website Yes Yes Yes Yes Yes
Browser Yes Yes Yes Yes Yes
DSP Yes

Observations 5,529,489 5,529,489 5,529,489 736,745 736,745
Adjusted R2 0.10623 0.11052 0.31362 0.24918 0.26361

Notes: The base levels for age and gender are both Unknown. Standard errors are clustered by the
hour of the day, the city, and the website and are heteroskedasticity-robust. ***, **, and * indicate
statistical significance at the 1, 5, and 10% levels, respectively.
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Table 5: Regression results for the number of bidders and entry decision

Dependent Variables: No. bidders Entry
(1) (2) (3) (4) (5) (6)

OLS OLS OLS OLS OLS Logit

Cookie 5.796∗∗∗ 5.220∗∗∗ 0.161∗∗∗ 0.145∗∗∗ 0.145∗∗∗ 0.184∗∗∗

(0.281) (0.259) (0.008) (0.007) (0.007) (0.013)
Opt-out 0.098 0.003 0.003 0.018∗

(0.133) (0.004) (0.004) (0.010)
Computer -0.926∗∗∗ -0.024∗∗∗ -0.024∗∗∗ -0.045∗∗∗

(0.103) (0.003) (0.003) (0.006)
Gender female 0.768∗∗∗ 0.021∗∗∗ 0.021∗∗∗ 0.035∗∗∗

(0.046) (0.001) (0.001) (0.003)
Gender male 0.327∗∗∗ 0.009∗∗∗ 0.009∗∗∗ 0.021∗∗∗

(0.054) (0.002) (0.002) (0.004)
Age 24 and below -0.182∗ -0.005∗ -0.005∗ -0.018∗∗∗

(0.090) (0.003) (0.003) (0.004)
Age 25 to 44 -0.498∗∗∗ -0.014∗∗∗ -0.014∗∗∗ -0.020∗∗∗

(0.071) (0.002) (0.002) (0.004)
Age 45 to 64 -0.627∗∗∗ -0.017∗∗∗ -0.017∗∗∗ -0.023∗∗∗

(0.094) (0.003) (0.003) (0.005)
Age 65 and above -0.805∗∗∗ -0.022∗∗∗ -0.022∗∗∗ -0.028∗∗∗

(0.099) (0.003) (0.003) (0.005)
Interest segments 0.432∗∗∗ 0.012∗∗∗ 0.012∗∗∗ 0.012∗∗∗

(0.059) (0.002) (0.002) (0.002)
Months monetized 0.019∗∗∗ 0.001∗∗∗ 0.001∗∗∗ 0.000∗∗∗

(0.002) (0.000) (0.000) (0.000)
Total revenue (normalized) -0.180∗∗∗ -0.005∗∗∗ -0.005∗∗∗ -0.006∗∗∗

(0.012) (0.000) (0.000) (0.000)
Days in database -0.256∗∗∗ -0.007∗∗∗ -0.007∗∗∗ -0.008∗∗∗

(0.021) (0.001) (0.001) (0.001)

Fixed effects
Time (hour) Yes Yes Yes Yes Yes Yes
City Yes Yes Yes Yes Yes Yes
Website Yes Yes Yes Yes Yes Yes
Browser Yes Yes Yes Yes Yes Yes
DSP Yes

Observations 736,745 736,745 26,522,820 26,522,820 26,522,820 2,652,282
Adjusted R2 0.44635 0.46616 0.04701 0.04908 0.26756

Notes: The base levels for age and gender are both Unknown. Column (6) reports the marginal
effects of the logit model at the mean or mode values of the explanatory variables using a 10%
sample of the dataset. The raw estimates are reported in table 9 of the appendix. Standard errors
are clustered by the hour of the day, the city, and the website and are heteroskedasticity-robust.
***, **, and * indicate statistical significance at the 1, 5, and 10% levels, respectively.
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translates to the revenue for the publisher (Yahoo). Table 4 columns (4) and (5)

report the results of two alternative specifications. We find that having third-party

cookies increases the highest bids, and consequently Yahoo’s revenue, by a substantial

75%. Observe that this effect is more than double the effect in columns (1)-(3). The

difference can be attributed to the fact that the bid regression does not account for

entry; it only captures submitted bids.

An important feature of the online ad market is that bidders participate in auctions

selectively. Recall that table 1 showed substantial variation in the number of bidders

for different auctions, with a mean of 7.5 bidders and a standard deviation of 4.7.

Therefore, we run regression 1 with the outcome variable yi as the number of bidders

in each auction i. Table 5 columns (1) and (2) report the results of two alternative

specifications. We find that, on average, an auction with third-party cookie identifiers

induces about 5 more bidders (out of 33) to participate in the auction compared to

an impression without. This is broadly consistent with some DSPs’ strategies who

simply only enter auctions with third-party cookie identifiers.

Lastly, we examine the effect of cookie availability on the entry decision of bidders

in the auctions. In model 1, the outcome variable yi is Entryi, a binary variable

constructed for each auction-bidder pair that is equal to 1 if the bidder submitted

a bid in the auction. Table 5 columns (3)-(5) report the results of three alternative

specifications of such a linear probability model. We find that, on average, bidders

are about 14% more likely to participate and submit a bid if the impression has third-

party cookie identifiers. Assuming independence between the 33 DSPs, the increase

in entry probability translates to an average increase in the number of bidders by

33×0.14 ≈ 5, which is consistent with the estimation above. As a robustness check, we

estimate a logit model for auction participation, Entryi = 1{βcCookiei+x′iβ+αi+εi ≥
0}, where εi follows the standard logistic distribution. Table 5 column (6) reports the

estimated marginal effects at the mean or mode values of the explanatory variables.

The magnitude of the effect of cookies is comparable to those of the linear models.

In the appendix, we report the point estimates of the logit model. The estimated

coefficient on cookie availability translates into an odds ratio of e1.19 = 3; that is, the

probability that a bidder participates in an auction for a cookie impression is three

times higher than that for an auction for a cookieless impression.
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4 Structural Estimation

4.1 Auction model and equilibrium characterization

Our empirical model is an independent private-value auction model with asymmet-

ric bidders and binding reserve price (Krishna, 2009; Hubbard and Paarsch, 2014).

We adopt the independent private-value assumption to reflect how users’ impressions

are horizontally differentiated; for instance, an impression from a male consumer is

more valuable for male fashion brands but less valuable for female fashion brands. As

our descriptive evidence (Figure 2a) shows that there is significant heterogeneity in

bidding behavior across bidders, we allow for bidder heterogeneity in valuation dis-

tributions. Finally, our descriptive evidence shows that bidders enter only a fraction

of auctions, and auctions in our data have reserve prices that vary across different

websites.16

Consider an auction of an impression with a reserve price r and i = 1, 2, · · · , N
potential buyers. Suppose each bidder i draws an independent private value vi from

a distribution Fi(vi) that is differentiable with a density function fi(vi). We suppress

the dependency on auction characteristics now and will allow them to depend on

both observed and unobserved auction characteristics later. Assume that all valuation

distributions have a common, compact support [0, v]. If no one bids above the reserve

price, then the impression is not sold. Otherwise, the auction is resolved by the first-

price mechanism where the bidder with the largest bid wins the auction and pays his

bid bi.

Suppose that all bidders are in equilibrium and use a bidding strategy βi(vi) that

is differentiable and monotone increasing in his valuation vi. If the submitted bid bi is

less than the reserve price r, he loses the auction and receives zero profits. Otherwise,

the expected profit of bidder i given his bid bi is

πi(bi) = (vi − bi)
∏
j 6=i

Fj
(
ϕj(bi)

)
, (2)

16An alternative approach is to introduce an entry stage where bidders endogenously decide if
they would participate in an auction by comparing the expected profit to the bid preparation cost.
This is not applicable in our context because the bid preparation cost in terms of computation and
communication with the ad exchange is minimal compared to the reserve price.
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where, for simplicity, ϕj(b) = β−1
j (b) denotes the inverse bid function.17 The first-

order condition of the profit maximization problem yields the following equilibrium

condition:
1

ϕi(bi)− bi
=
∑
j 6=i

fj
(
ϕj(bi)

)
Fj
(
ϕj(bi)

)ϕ′j(bi) (3)

for i = 1, 2, · · · , N . Equation (3) is a system of nonlinear ordinary differential equa-

tions in the inverse bid functions ϕ1, · · · , ϕN that characterizes the Bayes-Nash equi-

librium.18

In addition to the characterization above, we require two additional boundary

conditions in order to solve the system. The lower boundary condition requires that

any bidder who draws the reserve price r would bid the reserve price. That is, for

i = 1, 2, · · · , N ,

ϕi(r) = r. (4)

The upper boundary condition requires that all bidders will submit the same bid b

when they draw the highest valuation v. In terms of the inverse bid function ϕi, we

have for i = 1, 2, · · · , N ,

ϕi(b) = v. (5)

4.2 Specifications and estimation procedure

In every auction, there is a constant number of N = 33 potential bidders who are

both qualified and ready to submit a bid.19 As explained earlier, we model auction

interaction at the DSP level rather than the thousands of advertisers that the DSPs

bid on behalf of. This assumption stays close to reality and also simplifies the com-

putation. We maintain the assumption that auctions in our sample are independent

of one another, abstracting away from potential dynamic considerations of the DSPs.

17Observe that the probability of winning is

Pr(i wins|bi) =
∏
j 6=i

Pr
(
bi > βj(vj)

)
=
∏
j 6=i

Pr
(
vj < β−1j (bi)

)
=
∏
j 6=i

Fj

(
β−1j (bi)

)
=
∏
j 6=i

Fj

(
ϕj(bi)

)
.

18The existence and uniqueness of such an equilibrium are generally guaranteed under mild con-
ditions. See Appendix G of Krishna (2009) for a discussion on the existence of such an equilibrium.
See Lebrun (1999) for the conditions for the uniqueness of the equilibrium.

19These are the DSPs that have registered and established a business relationship with Yahoo’s ad
exchange, and all of them were actively participating in the ad exchange during the sample period.
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Consider an auction t. Let xt denote the observed characteristics known to all

DSPs (such as the user’s cookie availability, opt-in/opt-out status, browser type, and

other characteristics including gender and age.) We let the valuation distribution of

each bidder i, Fit(·), depend on both observed and unobserved auction characteristics.

Specifically, we assume that the log of valuation, log(vit), follows a normal distribu-

tion with mean x′tγ + αi + ut and variance σ2
i , where ut is the unobserved auction

heterogeneity that is distributed normally with mean 0 and variance σ2
u.

20

There are two features in our specification that are integral to online ad auctions.

First, we account for bidder heterogeneity by allowing asymmetric bidder valuation

distributions through αi and σi. We let each bidder i fall into five distinct groups

according to their type and size: large general-purpose, small general-purpose, re-

broadcaster, large specialized, and small specialized (see section 2.1). With slight

abuse of notation, the subscript i of the parameters αi and σi denotes the group to

which the bidder belongs. As explained, different types of DSPs cater to advertisers of

different budgets, objectives, and targeted consumers, which may lead to an ex-ante

difference in their valuations for impressions. The size of DSPs is a key dimension that

captures their experience and expertise in matching advertisers with impressions.21

Second, the term ut captures the unobserved heterogeneity of the auction and

is assumed to take a normal distribution with mean 0 and standard deviation σu.

It essentially has a multiplicative effect on valuations as in Krasnokutskaya (2011).

This allows for bids within an auction to be correlated conditional on observable

characteristics, suggesting that there are hidden characteristics commonly observed

by the DSPs but not the econometrician.

We adopt a nested estimation procedure in which the inner loop solves for the

inverse bidding strategies ϕit(b) using the equilibrium characterization (3) and the

outer loop estimates the valuation parameters using maximum likelihood.

20The parametric approach follows the earlier empirical studies of auctions with high-dimensional
auction characteristics (Athey, Levin, and Seira, 2011; Krasnokutskaya and Seim, 2011). A non-
parametric approach is not ideal in our context because of the curse of dimensionality. In addition,
the binding reserve price gives rise to the truncation of valuation and unobserved heterogeneity.
The method allows us to parametrically recover the valuation distributions and the distribution of
unobserved heterogeneity, components important for counterfactual simulations.

21A fully asymmetric version of the model with a distinct valuation distribution for every bidder
is not desirable in our empirical setting. This alternative information structure would require that
bidders know all their competitors’ exact valuation distributions–a very strong assumption. It is
more realistic to assume that bidders only know their competitors’ group-specific parameters.
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For the outer loop, the valuation parameters are estimated parametrically with

maximum likelihood. Specifically, let sit be an indicator variable equal to 1 if bidder

i submits a bid in auction t and 0 otherwise. The likelihood of bidder i’s observed

bidding behavior sit and bit in auction t given ut is

Lit(sit, bit, xt, ut; γ, αi, σi) =
(
Fit(rt)

)1−sit(fit(ϕit(bit))ϕ′it(bit))sit , (6)

where the first component Fit(rt) corresponds to the probability of non-participation

due to valuation below the reserve price rt, and the second component fit(ϕit(bit))ϕ
′
it(bit)

is the density function of bids obtained by change of variable using the inverse bidding

function ϕit. Then the joint likelihood of all bidders in auction t is given by

Lt(st, bt, xt; γ,α,σ, σu) =

∫ ( N∏
i=1

Lit
)
φ(ut)dut, (7)

where the unobserved heterogeneity is integrated out with respect to its normal den-

sity function φ(ut) with mean 0 and variance σ2
u. We estimate the structural param-

eters by maximizing the sum of log(Lt) over the auctions t in the data.

The inner loop solves for the inverse bidding functions ϕit(b) for every auction. Be-

cause the equilibrium characterization (3) admits no closed-form solutions, we adopt

a numerical approach to solve the system. Following Hubbard and Paarsch (2009);

Hubbard, Kirkegaard, and Paarsch (2013); Hubbard and Paarsch (2014), we use

Mathematical Programs with Equilibrium Constraints (MPEC) to solve for the equi-

librium of the first-price auction model with asymmetric bidders. We approximate

the inverse bidding functions ϕit(b) as a linear combination of the first K Chebyshev

polynomials scaled to the interval [rt, bt]:

ϕit(b) =
K∑
k=0

ck,itTk(b), (8)

where Tk(b) is the Chebyshev polynomial of degree k scaled to the interval [rt, bt].

Then, we use the MPEC approach to discipline the Chebyshev coefficients ct so

that the first-order conditions defining the inverse equilibrium bid functions are ap-

proximately satisfied, subject to the boundary conditions (4) and (5). In addition,

we impose rationality (players must bid less than their valuation) and monotonicity
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(bid functions are increasing) as shape constraints on the Chebyshev approximations

(Hubbard and Paarsch, 2009; Hubbard, Kirkegaard, and Paarsch, 2013). Specifically,

from equation (3), we define

Git(b; ct, bt) = 1− (ϕit(b)− b)
∑
j 6=i

fjt
(
ϕjt(b)

)
Fjt
(
ϕjt(b)

)ϕ′jt(b), (9)

where ct are the coefficients of the linear combination of Chebyshev polynomials. Let

B be the set of Chebyshev nodes in [rt, bt]. For every auction t, we solve the following

constrained optimization problem to obtain ϕit and bt:
22

min
ct,bt

N∑
i=1

∑
b∈B

[
Git(b; ct, bt)

]2
(10)

s.t. ϕit(rt) = rt, ϕit(bt) = v, ϕit(b) ≥ b, ϕ′it(b) ≥ 0, for i = 1, . . . , N and b ∈ B.

4.3 Estimation results

Table 6 reports the estimated parameters of the bid distributions. The estimates

are of the expected sign and magnitude. In particular, the estimated coefficient of

cookie availability is positive and significant, confirming that third-party cookies in-

crease bidders’ valuations. An impression with third-party cookies available raises

the mean valuation by as much as 129 percent compared to an impression without

cookies. Given bid shading in first-price auctions, the estimate is consistent with

the reduced-form estimate of the effect on submitted bids. The estimated intercepts

αi and standard deviation σi show substantial differences in the mean and variance

parameters of valuation distribution across different DSP groups, where both small

general-purpose and small specialized DSPs have low valuation distributions, reflect-

ing their resource constraints. Lastly, the estimated variance of unobserved auction

heterogeneity σu, while smaller in comparison to group-specific variances, remains sta-

tistically significant and positive. This suggests the presence of unobserved variations

in auctions that are not accounted for by group-specific differences in the data.

We next present each bidder group’s bidding pattern in response to third-party

22In the implementation, we use the first K = 5 order Chebyshev polynomials and 20 Chebyshev
nodes for B to numerically approximate the inverse bid functions. These specifications are sufficiently
flexible for approximations in our setting.
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Table 6: Estimated parameters of valuation distributions

Parameter Estimate

γ
Cookie 1.288∗∗∗

(0.004)
Opt-out -0.047∗∗∗

(0.007)
Gender female -0.121∗∗∗

(0.009)
Gender male 0.003

(0.009)
Age 44 and below 0.030∗∗∗

(0.010)
Age 45 to 64 -0.005

(0.010)
Age 65 and above -0.037∗∗∗

(0.011)
Interest segments 0.063∗∗∗

(0.001)
Months monetized 0.004∗∗∗

(0.000)
Total revenue (normalized) 0.000

(0.000)
Days in database 0.402∗∗∗

(0.025)
Website fixed effects Yes
Browser fixed effects Yes

α
Large general-purpose -2.972∗∗∗

(0.007)
Small general-purpose -7.490∗∗∗

(0.010)
Rebroadcaster -4.144∗∗∗

(0.007)
Large specialized -3.185∗∗∗

(0.007)
mall specialized -6.111∗∗∗

(0.008)

σ
Large general-purpose 1.931∗∗∗

(0.002)
Small general-purpose 2.587∗∗∗

(0.004)
Rebroadcaster 2.342∗∗∗

(0.002)
Large specialized 1.383∗∗∗

(0.001)
Small specialized 2.089∗∗∗

(0.002)

σu 0.626∗∗∗

(0.001)

Notes: Parameter estimates of the log of valuation, log(vit), which follows a normal distribution
with mean x′tγ + αi + ut and variance σ2

i , where ut is the unobserved auction heterogeneity that is
distributed normally with mean 0 and variance σ2

u. Estimates of website and browser fixed effects
are not reported in the table. ***, **, and * indicate statistical significance at the 1, 5, and 10%
levels, respectively.
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Figure 3: Cookie vs. cookieless: estimated bidders’ behavior by DSP group

(a) CDFs of valuation distributions

(b) Density of entry probability
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(c) Bid functions

Notes: Plots of bidder behavior by DSP groups with estimated parameters. The DSPs are grouped
according to their purpose, specialty, and size. See section 2.1 for more details on the classification
of DSPs. Subplot (a) shows the empirical density of entry probability, i.e. how likely the valuation
exceeds the reserve price and the bidder submits a bid in an auction. (b) shows the cumulative
distribution function Fi of valuations at average auction characteristics. (c) shows the bid function
βi at average auction characteristics. See figure 4 of the appendix for the bid functions of big and
small general-purpose DSPs on the same plot.
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cookie availability in terms of their valuation distribution, entry probability, and bid-

ding strategy. Following the group classification outlined in section 2.1, we organize

the plots by large general-purpose, small general-purpose, rebroadcaster, large spe-

cialized, and small specialized DSPs. Each figure shows the outcome variables for

both impressions with and without cookies. For illustration, the valuation distribu-

tion and the bidding strategy are evaluated at the average values of the covariates.

Figure 3a shows the cumulative distribution functions (CDFs) of recovered valua-

tion distributions. Figure 3b presents the empirical density of fitted entry probability,

i.e. for all auctions in the data, the probability that the recovered valuation exceeds

the reserve price. For either figure, we observe a clear dominance relationship of

cookie impressions over cookieless ones across different DSP groups. Bidders are

more likely to place a higher value and submit a bid in an auction with third-party

cookies. There is also substantial heterogeneity across bidder groups. Notably, the

effect of cookie availability is more pronounced for large DSPs.

Figure 3c presents the bidding strategy βi and shows that bidders bid more ag-

gressively for cookie impressions.23 Observe that, for the same valuation, bidders on

average place bids on a cookie impression that are about twice as much as those on a

cookieless impression. The difference can be attributed to the competition intensity

between the two types of auctions, where fewer bidders would participate in auctions

for cookieless impressions. Overall, our estimated structural results demonstrate that

the difference between the average revenue from the two types of auctions comes from

the difference in valuations, entry behavior, and bidding strategies.

5 Counterfactual Simulations

Using the structural estimates and the MPEC equilibrium solver, we simulate coun-

terfactual scenarios to investigate the welfare redistribution of (1) Cookiepocalypse,

the planned removal of third-party cookies from Chrome, and (2) Privacy Sandbox,

the implementation of alternative tracking technologies. We show that the proposed

changes have significant anti-competitive implications in terms of welfare distribution

23Given the relatively large number of bidders (33 in our data), average bidding strategies appear
similar across bidder groups, though they do exhibit differences. See Figure 4 in the Appendix for
a comparison. In particular, we find that smaller bidders adopt more aggressive bidding strategies
to compete against larger bidders, who tend to have higher valuations.
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among advertisers.

For each scenario, we consider three specifications. First, we simulate a status

quo scenario as the benchmark (a less noisy version of the status quo in the data),

to which we will compare the counterfactual scenarios. We will see that the results

from the status quo are comparable to the summary statistics from the actual data.

Second, we simulate a symmetric ban in which the cookie ban applies to all bidders,

and none of them observe the cookie information. Third, we simulate an asymmetric

ban by designating one bidder from the large general-purpose DSP group as the “Big

Tech” DSP who retains access to Chrome users’ third-party cookie information, but

none of the other bidders observe any cookie information for Chrome users.

The asymmetric ban mirrors concerns raised by antitrust authorities, whereby cer-

tain DSPs may have alternative ways to gather and use ad-relevant information about

users even when third-party cookies are blocked. For instance, DSPs affiliated with

prominent publishers may have extensive user information through first-party cook-

ies, which are typically enabled even by browsers that block third-party cookies by

default. They may be able to leverage this rich first-party information about users for

placing ads not only on their own websites but also on third-party websites, thereby

obtaining a large information advantage over DSPs without similar capabilities.24 A

prominent example is Google, which possesses large amounts of first-party informa-

tion on many internet users via its extensive web ecosystem encompassing the Google

search engine, Gmail, YouTube, and more. This unique access to first-party infor-

mation may allow Google to circumvent the effects of the Chrome third-party cookie

ban and perhaps even to benefit from such a ban.25

To implement the counterfactual simulations, we draw a random sample of 10,000

auctions of impressions from the data. Importantly, this sample includes impressions

from all browsers because we want to investigate the market-wide impact on the

advertising market. For Chrome impressions (about 58% in the drawn pool), we ma-

nipulate their impression characteristics to emulate scenarios of the Cookiepocalypse.

24This alternative information collection can be implemented with “digital fingerprinting” methods
that track users via IP addresses or device IDs, thus sidestepping cookies altogether. Peukert,
Bechtold, Batikas, and Kretschmer (2022) observe that the drop in third-party cookie requests after
the enactment of GDPR in the European Union was accompanied by a rise in first-party cookie
requests.

25The anti-competitive implications of Google’s plan on the ad supply chain have been closely
scrutinized by government agencies. See Jeon (2020) for a more detailed discussion on the market
power of Google in the online advertising markets.
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For each Chrome auction and each specification, we draw valuations based on the true

user characteristics for each bidder and, depending on the scenario and the bidder,

mask any third-party cookie information for each user to simulate the effects of the

ban. (That is, the cookie availability variable is set to zero. Other user characteris-

tics associated with third-party cookies are set to either unknown or zero.) Given the

counterfactual valuation distributions, we compute the bidding strategies by solving

the system of ordinary differential equations (3) that characterizes the equilibrium.

5.1 Cookiepocalypse, blocking third-party cookies on Chrome

We first investigate the effect of Cookiepocalypse on submitted bids, the number of

bidders, the winning bid (which translates into the publisher’s revenue), and bidders’

surplus. The results of this counterfactual simulation are presented in Table 7a. We

find that the average bid falls from $0.92 in the benchmark to $0.56, representing a

39% decrease, and the number of bidders decreases from 7.4 to 4.8. Altogether, this

results in about a halving (-54%) of the average publisher revenue from $2.4 down to

$1.1. This estimate is consistent with several studies investigating the potential effect

of removing third-party cookies including industrial studies.26 On the buyer side,

advertisers acquiring impressions through DSPs suffer a substantial 40% reduction in

their surplus (the difference between valuation and bid), from an average of $3.7 in

the benchmark to $2.2 in the first counterfactual.

We next investigate the distributional effect among bidders in terms of their win-

ning frequency and surplus to highlight the unequal impact of the Cookiepocalypse.

In Table 7b, we report the outcome variables in the asymmetric ban counterfactual

scenario separately for the Big Tech DSP and the other five bidder groups. (Recall

that the Big Tech DSP is drawn from the large general-purpose DSP group in the

benchmark.) In terms of winning frequency, the Big Tech DSP wins twice as often

(15.4%) in this scenario compared to the benchmark (8.3%), thanks to its informa-

tional advantage of having sole access to the behavioral information of Chrome users.

Its total surplus also increases accordingly from $31,800 in the status quo to $48,900

26Several papers study the effect of restricting third-party cookies in online advertising and find
a loss ranging from 4 percent to 66 percent (Beales and Eisenach, 2014; Marotta, Abhishek, and
Acquisti, 2019; Johnson, Shriver, and Du, 2020). The industry estimate is closer to the upper end,
where a study by Google finds that disabling third-party cookies results in an average loss of 52%
(Ravichandran and Korula, 2019).
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Table 7: Counterfactual simulation of Cookiepocalypse

(a) Simulated outcome

Status quo Symmetric ban Asymmetric ban

Bid 0.917 0.558 0.588
(1.487) (0.761) (0.831)

No. bidders 7.383 4.771 4.918
(3.965) (2.879) (2.865)

Publisher revenue 2.433 1.101 1.208
(2.765) (1.250) (1.399)

Bidder surplus 3.703 2.234 2.465
(5.604) (4.367) (4.629)

(b) Welfare distribution

Status quo Symmetric ban Asymmetric ban

Winning frequency
Big Tech DSP - - 0.152
Large general-purpose 0.083 0.082 0.076
Small general-purpose 0.003 0.003 0.003
Rebroadcaster 0.048 0.048 0.045
Large specialized 0.028 0.026 0.024
Small specialized 0.004 0.004 0.003

Surplus
Big Tech DSP - - 48,900
Large general-purpose 31,800 18,700 17,600
Small general-purpose 928 559 476
Rebroadcaster 20,200 12,800 12700
Large specialized 5,030 2,150 1920
Small specialized 875 420 369

Full-information surplus
Big Tech DSP - 48,900
Large general-purpose 31,000 29,300
Small general-purpose 749 645
Rebroadcaster 18,500 18,000
Large specialized 4,890 4,260
Small specialized 651 548

Notes: Simulated results are based on 10,000 auctions randomly drawn from the data. The Big
Tech DSP is drawn from the large general-purpose DSP group. For Chrome impressions, auction
characteristics are masked for all bidders in the symmetric ban scenario and are available exclusively
to the Big Tech DSP in the asymmetric ban scenario. For each scenario, valuations are updated
according to counterfactual characteristics, and outcomes are recomputed using the equilibrium
characterization.
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under the asymmetric ban, a 54% increase. At the same time, all the other bidders are

impacted negatively by the ban, winning less frequently and receiving lower surpluses

compared to the status quo and symmetric ban scenarios. Our results demonstrate

that the third-party cookie ban leads to divergent experiences for the informational

advantaged and disadvantaged bidders, where the former benefit from the ban at the

cost of the latter.

To further decompose this redistributive effect, we also calculate the “full-information”

surplus, that is, the difference between the valuation under cookie availability and the

bid in the counterfactual scenario. The gap between the full-information and limited-

information surpluses quantifies the loss in bidder welfare due to the inability to make

precise matches when DSPs lose the ability to accurately evaluate and target users

following the cookie ban. Comparing this difference in Table 7b, we see that welfare

loss stems primarily from the diminished ability of affected DSP to effectively target

users post-cookie ban. The primary factor responsible for the welfare redistribution

is the inability of disadvantaged bidders to match with the most appropriate adver-

tisements, rather than the Big Tech DSP monopolizing all the valuable impressions

in the market.

5.2 Privacy Sandbox, alternative tracking technologies

In the second counterfactual, we replace third-party cookies with an alternative

privacy-friendly tracking technology that allows bidders to acquire some behavioral

information on the users, albeit without the precision and granularity of the cookie-

generated information. Google has proposed a few alternative tracking technologies

under its Privacy Sandbox initiative since 2021, shortly after its announcement of a

third-party cookie ban. A prominent proposal is the Topic API.27 With Topics, the

browser will infer a handful of recognizable, interest-based “categories” for the user

(such as automotive, literature, rock music, etc.) based on recent browsing history

to help sites serve relevant ads. However, the specific sites the user has visited are

no longer shared across the web like they might have been with third-party cook-

27See https://privacysandbox.com/. Several techniques have been or are being proposed, de-
veloped, and experimented with. Google initially experimented with the Federated Learning of
Cohorts (FLoC) in 2021 and “received valuable feedback from regulators, privacy advocates, devel-
opers and industry. The new Topics API proposal addresses the same general use case as FLoC,
but takes a different approach intended to address the feedback received for FLoC. Chrome intends
to experiment with the Topics API and is no longer developing FLoC.”

32

https://privacysandbox.com/


ies. In essence, this new method allows for tracking and targeting but in a more

privacy-conscious and less precise manner than traditional third-party cookies.

In our implementation, because the exact alternative technology has not been

finalized and we do not observe the user’s interest categories, we follow the overarching

principle of these proposed technologies that seek the best of the two worlds. On the

one hand, users are afforded some degree of privacy; on the other hand, advertisers

continue to observe user characteristics, albeit coarser ones. Specifically, we model

this compromise between privacy and personalization by replacing Chrome users’

behavioral characteristics with the average characteristics for each Yahoo website (e.g.

Yahoo Mail, Yahoo Finance, Yahoo News, etc.). For example, the gender information

of a Chrome user visiting Yahoo Finance is replaced by the website’s proportions of

male and female users. The Big Tech DSP, on the other hand, continues to observe

Chrome users’ exact characteristics.

The rightmost column of Table 8a contains the summary outcomes of the asym-

metric ban under the Privacy Sandbox counterfactual. We find that the average bid

has fallen from $0.92 in the benchmark to $0.82 in the counterfactual, and the number

of bidders has decreased from 7.4 to 6.9. Altogether, this results in a 13% drop in the

average revenue per auction from $2.4 to $2.1, and the bidder (advertiser) surplus

drops by 8% from $3.7 to $3.4. In a word, the Privacy Sandbox still results in siz-

able welfare losses for both the publisher and the advertiser–an expected consequence

given the coarser information in the market. On the other hand, the impact is a

lot more cushioned compared to that of the Cookiepocalypse counterfactual under

which the publisher and the advertiser bear a much heavier loss of 54% and 40%,

respectively.

Table 8b presents the differentiated impact on DSP groups. Compared to the

Cookiepocalypse counterfactual in table 7b, Privacy Sandbox alleviates the anticom-

petitive redistribution as well as the rising market concentration in favor of the Big

Tech DSP. For the Big Tech bidder under the asymmetric ban, both its winning

frequency (9.4%) and total surplus ($36,000) increase compared to the benchmark

(8.3% and $31,800, respectively), representing a more than 10% gain, though the

advantage is substantially attenuated compared to that under Cookiepocalypse. The

disadvantaged bidders also experience noteworthy improvement compared to Cook-

iepocalypse. Their metrics under either symmetric or asymmetric ban are much

closer to the status quo level: Under the asymmetric ban, for example, large general-
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Table 8: Counterfactual simulation of Privacy Sandbox

(a) Simulated outcome

Status quo Symmetric ban Asymmetric ban

Bid 0.917 0.815 0.824
(1.487) (1.276) (1.298)

No. bidders 7.383 6.838 6.872
(3.965) (3.636) (3.636)

Publisher revenue 2.433 2.061 2.099
(2.765) (2.309) (2.363)

Bidder surplus 3.703 3.378 3.442
(5.604) (5.380) (5.475)

(b) Welfare distribution

Status quo Symmetric ban Asymmetric ban

Winning frequency
Big Tech DSP - - 0.094
Large general-purpose 0.083 0.083 0.082
Small general-purpose 0.003 0.003 0.003
Rebroadcaster 0.048 0.048 0.048
Large specialized 0.028 0.028 0.028
Small specialized 0.004 0.004 0.003

Surplus
Big Tech DSP - - 36,000
Large general-purpose 31,800 28,700 28,600
Small general-purpose 928 878 826
Rebroadcaster 20,200 18,700 18,800
Large specialized 5,030 4,230 3,940
Small specialized 875 745 715

Full-information surplus
Big Tech DSP - 36,000
Large general-purpose 32,600 32,500
Small general-purpose 951 898
Rebroadcaster 20,500 20,500
Large specialized 5,400 5,030
Small specialized 843 805

Notes: Simulated results are based on 10,000 auctions randomly drawn from the data. The Big
Tech DSP is drawn from the large general-purpose DSP group. For Chrome impressions, auction
characteristics are averaged at the website level for all bidders in the symmetric ban scenario. Exact
characteristics are available exclusively to the Big Tech DSP in the asymmetric ban scenario. For
each scenario, valuations are updated according to counterfactual characteristics, and outcomes are
recomputed using the equilibrium characterization.
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purpose DSPs enjoy a surplus of $28,600, below the status quo level of $31,800, but

a substantial alleviation compared to $17,600 under Cookiepocalypse. Although still

a heavy 10% loss from the advertiser’s perspective, this set of results suggests that

advertising surplus and user privacy may not necessarily be at great odds. DSPs can

rely on privacy-friendly technologies and coarser information to implement targeted

ads without severely hurting their bottom lines. The anticompetitive redistribution

effect, although much ameliorated compared to Cookiepocalypse, is still present and

significant.

6 Conclusion

We study the impact of privacy protection on online advertising markets. As privacy

concerns have mounted in recent years, internet browsers are increasingly moving

away from third-party cookies, a widely-used tool to track online user behavior across

the web and implement targeted ads. In this paper, we investigate the impact of a

third-party cookie ban by analyzing online banner ad auctions using a detailed bid-

level dataset from Yahoo. We find that auction participation, submitted bids, and

revenue are higher when third-party cookies are available. This initial set of results

demonstrates the pivotal role of third-party cookies in facilitating online advertising.

We next construct an empirical auction model, analytically characterize the equi-

librium, and structurally recover valuation distributions from observed bids in the

dataset. To evaluate the impact of the planned phasing-out of third-party cookies

from Google Chrome, we perform counterfactual analyses based on the recovered

structural parameters. Our results indicate that an outright ban–Cookiepocalypse–

would reduce publisher revenue by 54% and advertiser surplus by 40%. However, the

introduction of alternative, privacy-conscious tracking technologies under Google’s

Privacy Sandbox initiative, which delivers coarser user information to advertisers,

would mitigate these losses.

We also quantify the redistribution of welfare resulting from the third-party cookie

ban in which some large, informationally advantaged bidders could leverage their

rich information over their competitors in online ad auctions. We find that these

advantaged bidders stand to reap a larger surplus from the ban, whereas other bidders

have no such recourse. Because of big tech firms’ substantial presence in the ad supply
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chain and their abundant user information, the plan to eliminate third-party cookies

raises legitimate antitrust concerns regarding competition and monopoly power in

online advertising markets.
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A Additional Tables and Figures

Table 9: Regression results of logit model of entry decision

Dependent Variable: Entry
(1)

Cookie 1.191∗∗∗

(0.053)
Opt-out 0.084∗

(0.046)
Computer -0.207∗∗∗

(0.028)
Gender female 0.164∗∗∗

(0.010)
Gender male 0.098∗∗∗

(0.015)
Age 24 and below -0.086∗∗∗

(0.021)
Age 25 to 44 -0.099∗∗∗

(0.020)
Age 45 to 64 -0.113∗∗∗

(0.021)
Age 65 and above -0.140∗∗∗

(0.023)
Interest segments 0.057∗∗∗

(0.008)
Months monetized 0.002∗∗∗

(0.000)
Total revenue (normalized) -0.030∗∗∗

(0.002)
Days in database -0.037∗∗∗

(0.004)

Fixed effects
Time (hour) Yes
City Yes
Website Yes
Browser Yes

Observations 2,652,282

Notes: Estimation results of auction participation using logit model with 10% of the data. The
base levels for age and gender are both Unknown. Standard errors are clustered by the hour of the
day, the city, and the website and are heteroskedasticity-robust. ***, **, and * indicate statistical
significance at the 1, 5, and 10% levels, respectively.
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Figure 4: Bidding functions of large and small general-purpose DSPs

Notes: Bid functions of large and small general DSPs for cookie and cookieless impressions using
estimated parameters at average auction characteristics.
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